Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields

N. Fazio^{1,2} R. Gennaro^{1,2} I.M. Perera² W.E. Skeith $III^{1,2}$

¹The City College of CUNY {fazio,rosario,wes}@cs.ccny.cuny.edu

> ²The Graduate Center of CUNY iperera@gc.cuny.edu

CRYPTO 2013

Introduction	Background	Related Work	Contribution	Conclusion
•	0000		0000000	O
Our Results				

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field \mathbb{F}_{p^2} .

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit of the input to a finite field-based partial one-way function (FFB-POWF) is unpredictable.

Introduction	Background	Related Work	Contribution	Conclusion
•	0000		0000000	O
Our Results				

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field \mathbb{F}_{p^2} .

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit of the input to a finite field-based partial one-way function (FFB-POWF) is unpredictable.

Introduction	Background	Related Work	Contribution	Conclusion
●	0000		0000000	O
Our Results				

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field \mathbb{F}_{p^2} .

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit of the input to a finite field-based partial one-way function (FFB-POWF) is unpredictable.

One-way Function

f: X → Y is a one-way function (OWF) iff
It is easy to compute f(x) given x ∈ X
It is hard to invert, i.e.,

$$\forall \mathsf{PPT}\,\mathcal{A} \qquad \Pr_x[f(z) = y \mid y = f(x), \, z = \mathcal{A}(y)] \le \mathsf{negl}.$$

Hard-Core Predicate for OWF f

• $P: \mathcal{X} \to \{0, 1\}$ is a hard-core predicate for f iff

$$\forall \mathsf{PPT}\,\mathcal{A} \qquad \Pr_x[\mathcal{A}(f(x)) = P(x)] \le \frac{1}{2} + \mathsf{negl}.$$

One-way Function

f: X → Y is a one-way function (OWF) iff
It is easy to compute f(x) given x ∈ X
It is hard to invert, i.e.,

$$\forall \mathsf{PPT}\,\mathcal{A} \qquad \Pr_x[f(z) = y \mid y = f(x), \, z = \mathcal{A}(y)] \le \mathsf{negl}.$$

Hard-Core Predicate for OWF f

 $\blacksquare \ P: \mathcal{X} \to \{0,1\}$ is a hard-core predicate for f iff

$$\forall \; \mathsf{PPT}\, \mathcal{A} \qquad \Pr_x[\mathcal{A}(f(x)) = P(x)] \leq \frac{1}{2} + \mathsf{negl.}$$

Introduction	Background	Related Work	Contribution	Conclusion
O	o●oo		0000000	O
Diffie-Hellman	Problem and	its Hard-Core	Predicates	

DH Problem

• DH is hard in a group
$$\mathbb{G} = \langle g \rangle$$
 iff

$$\forall \; \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(\mathbb{G},g,g^a,g^b) = g^{ab} \Big] \leq \mathsf{negl}.$$

Hard-Core Predicate for DH

 \blacksquare $P:\mathbb{G}\to\{0,1\}$ is a hard-core predicate for DH problem over \mathbb{G} iff

$$\forall \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b}\Big[\mathcal{A}(\mathbb{G},g,g^a,g^b) = P(g^{ab})\Big] \leq \frac{1}{2} + \mathsf{negl}.$$

Introduction 0	Background 0●00	Related Work	Contribution	Conclusion o
Diffie-Hellman	Problem ar	nd its Hard-Core	- Predicates	

DH Problem

$$\blacksquare$$
 DH is hard in a group $\mathbb{G}=\langle g\rangle$ iff

$$\forall \; \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(\mathbb{G},g,g^a,g^b) = g^{ab} \Big] \leq \mathsf{negl}.$$

Hard-Core Predicate for DH

 $\blacksquare~P:\mathbb{G}\to\{0,1\}$ is a hard-core predicate for DH problem over \mathbb{G} iff

$$\forall \; \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(\mathbb{G},g,g^a,g^b) = P(g^{ab}) \Big] \leq \frac{1}{2} + \mathsf{negl}.$$

Introduction	Background	Related Work	Contribution	Conclusion
O	00●0		0000000	0
Why We Need	l Hard-Core Pr	edicates		

- $f(x), (g^a, g^b)$ could reveal a lot of partial information about x, g^{ab} but not about their hard-core predicates
- Hard-core predicates can be used where *pseudo-randomness* is needed
 - Key exchange, encryption, pseudo-random generators, etc.

Introduction	Background	Related Work	Contribution	Conclusion
0	00●0		0000000	0
Why We Need	Hard-Core Pr	edicates		

- $f(x), (g^a, g^b)$ could reveal a lot of partial information about x, g^{ab} but not about their hard-core predicates
- Hard-core predicates can be used where *pseudo-randomness* is needed
 - Key exchange, encryption, pseudo-random generators, etc.

Introduction	Background	Related Work	Contribution	Conclusion
0	000●		0000000	O
Known Hard-	Core Predica	tes		

Specific Hard-Core Predicates

- MSB of DL over \mathbb{F}_p is hard-core *Blum and Micali (1984)*
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core
 - Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)
- LSB of EC-based DH secret is hard-core (in a modified model)
 - Boneh and Shparlinski (2001)

General Hard-Core Predicates

• Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - *Goldreich and Levin (1989)*

Introduction	Background	Related Work	Contribution	Conclusion
0	000●		0000000	O
Known Hard-	Core Predica	tes		

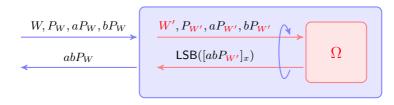
Specific Hard-Core Predicates

- MSB of DL over \mathbb{F}_p is hard-core *Blum and Micali (1984)*
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core
 Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)
- LSB of EC-based DH secret is hard-core (in a modified model)
 - Boneh and Shparlinski (2001)

General Hard-Core Predicates

 Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - Goldreich and Levin (1989)

- \blacksquare EC-based DH is hard \rightarrow LSB of DH secret is hard-core
- Given Ω predicting LSB of DH secret over a random representation of the curve, recover the entire DH secret



Introduction	Background	Related Work	Contribution	Conclusion
0	0000	○●○	0000000	O
The Result of	Akavia et al.	(2003)		

• A framework for proving that a predicate π is hard-core for a OWF f (pproach

Define a multiplication code

 $\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\} \quad \text{where} \quad C_x(\lambda) = \pi(\lambda \cdot x)$

- Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- \blacksquare Use list-decoding techniques to find a small set of candidates for x

Introduction	Background	Related Work	Contribution	Conclusion
O		○●○	0000000	O
The Result of	Akavia et al.	(2003)		

 \blacksquare A framework for proving that a predicate π is hard-core for a OWF f Approach

1 Define a multiplication code

$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\} \quad \text{where} \quad C_x(\lambda) = \pi(\lambda \cdot x)$$

- 2 Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- 3 Use list-decoding techniques to find a small set of candidates for x

Introduction	Background	Related Work	Contribution	Conclusion
O	0000	○●○	0000000	O
The Result of	Akavia et al.	(2003)		

 \blacksquare A framework for proving that a predicate π is hard-core for a OWF f Approach

1 Define a multiplication code

$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\} \quad \text{where} \quad C_x(\lambda) = \pi(\lambda \cdot x)$$

- 2 Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- 3 Use list-decoding techniques to find a small set of candidates for x

Introduction	Background	Related Work	Contribution	Conclusion
O	0000	○●○	0000000	O
The Result of	Akavia et al.	(2003)		

 \blacksquare A framework for proving that a predicate π is hard-core for a OWF f Approach

1 Define a multiplication code

$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\} \quad \text{where} \quad C_x(\lambda) = \pi(\lambda \cdot x)$$

- 2 Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- 3 Use list-decoding techniques to find a small set of candidates for x

•
$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\ensuremath{\mathcal{C}}$ meets the following properties

Accessible Given f(x), it is possible to get a "noisy" \tilde{C}_x of C_x They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$ Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$ Concentrated Every codeword C_x is a Fourier concentrated function Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x Fourier-Learnable It is possible to efficiently learn all the heavy coefficients of C_x given query access to its noisy version.

•
$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\ensuremath{\mathcal{C}}$ meets the following properties

Accessible Given f(x), it is possible to get a "noisy" C̃_x of C_x
They assume f is homomorphic i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to C_x(λ) is obtained by querying the oracle on f(λx)
Concentrated Every codeword C_x is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm the finds all values x such that χ is "heavy" for C_x
Fourier Learnable It is possible to efficiently learn all the heavy coefficient of C_x given query access to its noisy version

•
$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\ensuremath{\mathcal{C}}$ meets the following properties

Accessible Given f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic
 - i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword $\mathcal{C}_{\boldsymbol{x}}$ is a Fourier concentrated function

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

•
$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\ensuremath{\mathcal{C}}$ meets the following properties

Accessible Given f(x), it is possible to get a "noisy" C̃_x of C_x
They assume f is homomorphic i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to C_x(λ) is obtained by querying the oracle on f(λx)
Concentrated Every codeword C_x is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that finds all values x such that χ is "heavy" for C_x

•
$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\ensuremath{\mathcal{C}}$ meets the following properties

Accessible Given f(x), it is possible to get a "noisy" \tilde{C}_x of C_x They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$ Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$ Concentrated Ever Recoverable Given finds all value Can be shown when π is any individual bit and \mathcal{C} is a multiplication code.

•
$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\ensuremath{\mathcal{C}}$ meets the following properties

Accessible Given f(x), it is possible to get a "noisy" \tilde{C}_x of C_x They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$ Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$ Concentrated Ever Recoverable Given finds all value Can be shown when π is any individual bit and \mathcal{C} is a multiplication code. Include the state of the shown that the state of th

 \blacksquare An elliptic curve E can be represented by a short Weierstrass equation

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

- $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda^{-4}a$, $b' = \lambda^{-6}b$ for $\lambda \in \mathbb{F}_p^{\times}$
- The isomorphism class of E is given by

 $\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$

– The isomorphism Φ_λ is easily computed as

 $\Phi_\lambda((x,y))=(\lambda^2 x,\lambda^3 y)$

 \blacksquare An elliptic curve E can be represented by a short Weierstrass equation

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

W_{a,b} is isomorphic to W'_{a',b'} iff a' = λ⁻⁴a, b' = λ⁻⁶b for λ ∈ 𝔽[×]_p
 The isomorphism class of E is given by

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

• The isomorphism Φ_{λ} is easily computed as

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

 \blacksquare An elliptic curve E can be represented by a short Weierstrass equation

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

- $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda^{-4}a$, $b' = \lambda^{-6}b$ for $\lambda \in \mathbb{F}_p^{\times}$
- The isomorphism class of E is given by

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

• The isomorphism Φ_{λ} is easily computed as

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

 \blacksquare An elliptic curve E can be represented by a short Weierstrass equation

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

• $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda^{-4}a$, $b' = \lambda^{-6}b$ for $\lambda \in \mathbb{F}_p^{\times}$ • The isomorphism class of E is given by

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

 \blacksquare The isomorphism Φ_λ is easily computed as

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

Introduction	Background	Related Work	Contribution	Conclusion
0	0000		o●ooooo	O
Our Result 1	Bit-security of	Diffie-Hellman d	over Elliptic Cur	ves

Assumption

\blacksquare DH problem over an EC instance generator ${\mathcal E}$ is hard iff

$$\forall \; \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b}\Big[\mathcal{A}(E,P,aP,bP) = abP \mid E \leftarrow \mathcal{E}(1^\ell)\Big] \leq \mathsf{negl}(\ell)$$

Theorem

• If DH over \mathcal{E} is hard, then

$$\forall \mathsf{PPT}\,\Omega \qquad \left| \Pr_{a,b,\lambda}[\Omega(\lambda, E, P, aP, bP) = B_k([\Phi_\lambda(abP)]_x)] - \beta_k \right| \le \mathsf{negl}(\ell)$$

Introduction	Background	Related Work	Contribution	Conclusion
O	0000		o●ooooo	O
Our Result 1	Bit-security of	Diffie-Hellman d	over Elliptic Cur	Ves

Assumption

\blacksquare DH problem over an EC instance generator ${\cal E}$ is hard iff

$$\forall \; \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b}\Big[\mathcal{A}(E,P,aP,bP) = abP \mid E \leftarrow \mathcal{E}(1^\ell)\Big] \leq \mathsf{negl}(\ell)$$

Theorem

• If DH over \mathcal{E} is hard, then

$$\forall \operatorname{\mathsf{PPT}}\Omega \qquad \left| \Pr_{a,b,\boldsymbol{\lambda}}[\Omega(\boldsymbol{\lambda}, E, P, aP, bP) = B_k([\Phi_{\boldsymbol{\lambda}}(abP)]_x)] - \beta_k \right| \leq \operatorname{\mathsf{negl}}(\ell)$$

.

Introduction 0	Background 0000	Related Work	Contribution	Conclusion 0
Our Resu	ılt 1: Proof Sketc	h		
1 <i>Ε</i> 2 Ω How w	we are given , P , aP , bP predicting $B_k([\Phi_\lambda(ab, ab, bb])]$ e do it effine the multiplication C and C and C and C	i code		

Introduction 0	Background 0000	Related Work 000	Contribution 0000000	Conclusion O
Our Result 1	: Proof Sketch			

1 E, P, aP, bP

2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv

How we do it

1 Define the multiplication code

 $\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^\times \to \{\pm 1\} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$

2 But $\Phi_{\lambda}(\cdot)$ squares λ . So, following BoSh01, define

 $\Omega'(\lambda, E, P, aP, bP) = \begin{cases} \Omega(\sqrt{\lambda}, E, P, aP, bP) & \text{if } \lambda \text{ is a square} \\ \beta_k \text{-biased coin} & \text{otherwise} \end{cases}$

 C meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy C̃_Q = Ω'(λ, E, P, aP, bP) Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
 This process yields a poly-size list of candidates: either output one at readem or use Shoup's cell corrector.

Our Result 1: Proof Sk	ketch	

1 E, P, aP, bP

2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv

How we do it

1 Define the multiplication code

 $\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{ \pm 1 \} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$

2 But $\Phi_{\lambda}(\cdot)$ squares λ . So, following BoSh01, define

$$\Omega'(\lambda, E, P, aP, bP) = \begin{cases} \Omega(\sqrt{\lambda}, E, P, aP, bP) & \text{if } \lambda \text{ is a square} \\ \beta_k \text{-biased coin} & \text{otherwise} \end{cases}$$

 C meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy C̃_Q = Ω'(λ, E, P, aP, bP) Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
 This process yields a poly-size list of candidates: either output one at random or use Shoup's self corrector.

Our Result 1: Proof Sk	ketch	

1 E, P, aP, bP

2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv

How we do it

1 Define the multiplication code

 $\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{ \pm 1 \} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$

2 But $\Phi_{\lambda}(\cdot)$ squares λ . So, following BoSh01, define

$$\Omega'(\lambda, E, P, aP, bP) = \begin{cases} \Omega(\sqrt{\lambda}, E, P, aP, bP) & \text{if } \lambda \text{ is a square} \\ \beta_k \text{-biased coin} & \text{otherwise} \end{cases}$$

 C meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy C̃_Q = Ω'(λ, E, P, aP, bP)
 Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
 This process yields a poly size list of condidates: either output one at

This process yields a poly-size list of candidates: either output one at random or use Shoup's self-corrector

Introduction	Background	Related Work	Contribution	Conclusion
0	0000	000	0000000	O
Our Result 1:	Proof Sketch			

1 E, P, aP, bP

2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv

How we do it

1 Define the multiplication code

 $\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{ \pm 1 \} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$

2 But $\Phi_{\lambda}(\cdot)$ squares λ . So, following BoSh01, define

$$\Omega'(\lambda, E, P, aP, bP) = \begin{cases} \Omega(\sqrt{\lambda}, E, P, aP, bP) & \text{if } \lambda \text{ is a square} \\ \beta_k \text{-biased coin} & \text{otherwise} \end{cases}$$

3 C meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy C̃_Q = Ω'(λ, E, P, aP, bP) Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
4 This process yields a poly-size list of candidates: either output one at random or use Shoup's self-corrector

The Finite Field \mathbb{F}_{p^2}

- For a given prime p, there are around $p^2/2$ fields of the form $\mathbb{F}_{p^2},$ all isomorphic to each other
- Each such field can be represented by a monic irreducible polynomial $h(x) = x^2 + h_1 x + h_0$ so that the field is isomorphic to $\mathbb{F}_p[x]/(h)$
- Then, $g \in \mathbb{F}_{p^2}$ is a linear polynomial $g = g_0 + g_1 x$. Let $[g]_i$ denote g_i .
- Also for h, \hat{h} there exists an easily computable isomorphism $\phi_{h,\hat{h}}$, computed by right multiplication of the coefficients by a matrix $\begin{bmatrix} 1 & 0 \\ \mu & \lambda \end{bmatrix}$.

For example,

$$\begin{split} \phi_{h,\tilde{h}}(g) &= \phi_{h,\tilde{h}}(\begin{bmatrix} g_0 & g_1 \end{bmatrix}) \\ &= \begin{bmatrix} g_0 & g_1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ \mu & \lambda \end{bmatrix} \\ &= \begin{bmatrix} g_0 + \mu g_1 & \lambda g_1 \end{bmatrix}. \end{split}$$

The Finite Field \mathbb{F}_{p^2}

- For a given prime p, there are around $p^2/2$ fields of the form $\mathbb{F}_{p^2},$ all isomorphic to each other
- Each such field can be represented by a monic irreducible polynomial $h(x) = x^2 + h_1 x + h_0$ so that the field is isomorphic to $\mathbb{F}_p[x]/(h)$
- Then, $g \in \mathbb{F}_{p^2}$ is a linear polynomial $g = g_0 + g_1 x$. Let $[g]_i$ denote g_i .
- Also for h, ĥ there exists an easily computable isomorphism φ_{h,ĥ}, computed by right multiplication of the coefficients by a matrix [¹_μ ⁰_λ].
 For example,

$$\begin{split} \phi_{h,\hat{h}}(g) &= \phi_{h,\hat{h}}(\begin{bmatrix} g_0 & g_1 \end{bmatrix}) \\ &= \begin{bmatrix} g_0 & g_1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ \mu & \lambda \end{bmatrix} \\ &= \begin{bmatrix} g_0 + \mu g_1 & \lambda g_1 \end{bmatrix}. \end{split}$$

The Finite Field \mathbb{F}_{p^2}

- For a given prime p, there are around $p^2/2$ fields of the form $\mathbb{F}_{p^2},$ all isomorphic to each other
- Each such field can be represented by a monic irreducible polynomial $h(x) = x^2 + h_1 x + h_0$ so that the field is isomorphic to $\mathbb{F}_p[x]/(h)$
- Then, $g \in \mathbb{F}_{p^2}$ is a linear polynomial $g = g_0 + g_1 x$. Let $[g]_i$ denote g_i .
- Also for h, ĥ there exists an easily computable isomorphism φ_{h,ĥ}, computed by right multiplication of the coefficients by a matrix [^{1 0}_{μ λ}].
 For example,

$$\phi_{h,\hat{h}}(g) = \phi_{h,\hat{h}}(\begin{bmatrix} g_0 & g_1 \end{bmatrix})$$
$$= \begin{bmatrix} g_0 & g_1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ \mu & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} g_0 + \mu g_1 & \lambda g_1 \end{bmatrix}.$$

The Finite Field \mathbb{F}_{p^2}

- For a given prime p, there are around $p^2/2$ fields of the form $\mathbb{F}_{p^2},$ all isomorphic to each other
- Each such field can be represented by a monic irreducible polynomial $h(x) = x^2 + h_1 x + h_0$ so that the field is isomorphic to $\mathbb{F}_p[x]/(h)$
- Then, $g \in \mathbb{F}_{p^2}$ is a linear polynomial $g = g_0 + g_1 x$. Let $[g]_i$ denote g_i .
- Also for h, ĥ there exists an easily computable isomorphism φ_{h,ĥ}, computed by right multiplication of the coefficients by a matrix [^{1 0}_{μ λ}].
 For example,

$$\phi_{h,\hat{h}}(g) = \phi_{h,\hat{h}}(\begin{bmatrix} g_0 & g_1 \end{bmatrix})$$
$$= \begin{bmatrix} g_0 & g_1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ \mu & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} g_0 + \mu g_1 & \lambda g_1 \end{bmatrix}.$$

The Finite Field \mathbb{F}_{p^2}

- For a given prime p, there are around $p^2/2$ fields of the form $\mathbb{F}_{p^2},$ all isomorphic to each other
- Each such field can be represented by a monic irreducible polynomial $h(x) = x^2 + h_1 x + h_0$ so that the field is isomorphic to $\mathbb{F}_p[x]/(h)$
- Then, $g \in \mathbb{F}_{p^2}$ is a linear polynomial $g = g_0 + g_1 x$. Let $[g]_i$ denote g_i .
- Also for h, ĥ there exists an easily computable isomorphism φ_{h,ĥ}, computed by right multiplication of the coefficients by a matrix [^{1 0}_{μ λ}].
 For example,

$$\begin{split} \phi_{h,\hat{h}}(g) &= \phi_{h,\hat{h}}(\begin{bmatrix} g_0 & g_1 \end{bmatrix}) \\ &= \begin{bmatrix} g_0 & g_1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ \mu & \lambda \end{bmatrix} \\ &= \begin{bmatrix} g_0 + \mu g_1 & \lambda g_1 \end{bmatrix}. \end{split}$$

Assumption

 \blacksquare DH problem over a FF instance generator ${\mathcal F}$ is hard iff

$$\forall \; \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b} \bigg[\mathcal{A}(F,g,g^a,g^b) = -g^{ab} \quad \mid F \leftarrow \mathcal{F}(1^\ell) \bigg] \leq \mathsf{negl}(\ell)$$

Theorem

• If (Partial) DH over \mathcal{F} is hard, then

 $\left| \forall \mathsf{PPT}\,\Omega - \left| \Pr_{a,b,h,\hat{h}} \Big[\Omega(h,\hat{h},F,g,g^a,g^b) = B_k \Big(\Big[\phi_{h,\hat{h}} \big(g^{ab} \big) \Big]_1 \Big) \Big] - \beta_k \right| \le \mathsf{negl}(\ell)$

Proof Idea

Assumption

 \blacksquare DH problem over a FF instance generator ${\mathcal F}$ is hard iff

$$\forall \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b} \bigg[\mathcal{A}(F,g,g^a,g^b) = \underbrace{g^{ab}}_{\ell} | F \leftarrow \mathcal{F}(1^{\ell}) \bigg] \le \mathsf{negl}(\ell)$$

a linear polynomial

Theorem

If (Partial) DH over \mathcal{F} is hard, then

 $\forall \operatorname{PPT} \Omega \quad \left| \Pr_{a,b,h,\hat{h}} \Big[\Omega(h,\hat{h},F,g,g^a,g^b) = B_k \Big(\Big[\phi_{h,\hat{h}} \big(g^{ab} \big) \Big]_1 \Big) \Big] - \beta_k \right| \le \operatorname{negl}(\ell)$

Proof Idea

New Assumption

 \blacksquare (Partial) DH problem over a FF instance generator ${\cal F}$ is hard iff

$$\forall \; \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b}\Big[\mathcal{A}(F,g,g^a,g^b) = \fbox{\left[g^{ab}\right]_1} \mid F \leftarrow \mathcal{F}(1^\ell)\Big] \leq \mathsf{negl}(\ell)$$

Theorem

the degree-1 coefficient

• If (Partial) DH over \mathcal{F} is hard, then

$$\forall \operatorname{PPT} \Omega \quad \left| \Pr_{a,b,\hat{h}} \left[\Omega(h,\hat{h},F,g,g^a,g^b) = B_k \left(\left[\phi_{h,\hat{h}} \left(g^{ab} \right) \right]_1 \right) \right] - \beta_k \right| \le \operatorname{negl}(\ell)$$

Proof Idea

New Assumption

 \blacksquare (Partial) DH problem over a FF instance generator ${\cal F}$ is hard iff

$$\forall \; \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b}\Big[\mathcal{A}(F,g,g^a,g^b) = \boxed{\left[g^{ab}\right]_1} \mid F \leftarrow \mathcal{F}(1^\ell)\Big] \leq \mathsf{negl}(\ell)$$

Theorem

the degree-1 coefficient

 \blacksquare If (Partial) DH over ${\cal F}$ is hard, then

$$\forall \operatorname{PPT} \Omega \quad \left| \Pr_{a,b,\hat{h},\hat{h}} \left[\Omega(h,\hat{h},F,g,g^{a},g^{b}) = B_{k} \left(\left[\phi_{h,\hat{h}}(g^{ab}) \right]_{1} \right) \right] - \beta_{k} \right| \leq \operatorname{negl}(\ell)$$

Proof Idea

New Assumption

 \blacksquare (Partial) DH problem over a FF instance generator ${\cal F}$ is hard iff

$$\forall \; \mathsf{PPT}\,\mathcal{A} \qquad \Pr_{a,b}\Big[\mathcal{A}(F,g,g^a,g^b) = \fbox{\left[g^{ab}\right]_1} \mid F \leftarrow \mathcal{F}(1^\ell)\Big] \leq \mathsf{negl}(\ell)$$

Theorem

the degree-1 coefficient

 \blacksquare If (Partial) DH over ${\cal F}$ is hard, then

$$\forall \operatorname{\mathsf{PPT}}\Omega \quad \left| \Pr_{a,b,\underline{h},\hat{h}} \left[\Omega(\underline{h},\hat{h},F,g,g^a,g^b) = B_k \left(\left[\phi_{\underline{h},\hat{h}}(g^{ab}) \right]_1 \right) \right] - \beta_k \right| \le \operatorname{\mathsf{negl}}(\ell)$$

Proof Idea

Introduction	Background	Related Work	Contribution	Conclusion
0	0000	000	○○○○○●○	O
Our Result 2:	Proof Sketch			

1 F, g, g^a, g^b

2 Ω predicting $B_k([\phi_{h,\hat{h}}(g^{ab})]_1) = B_k(\lambda[g^{ab}]_1)$ with non-negl adv ow we do it

Define the multiplication code

 $\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid \alpha \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$

- But, we only get a poly-list of degree-1 coefficients. So, we pick one coefficient at random.

Introduction	Background	Related Work	Contribution	Conclusion
O	0000	000		0
Our Result 2:	Proof Sketch			

1 F, g, g^a, g^b

2 Ω predicting $B_k([\phi_{h,\hat{h}}(g^{ab})]_1) = B_k(\lambda[g^{ab}]_1)$ with non-negl adv How we do it

1 Define the multiplication code

$$\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{ \pm 1 \} \mid \alpha \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

- 2 C meets three properties required for the framework of Akavia et al. Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha} = \Omega(\lambda, g, g^a, g^b)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
- But, we only get a poly-list of degree-1 coefficients. So, we pick one coefficient at random.

Introduction	Background	Related Work	Contribution	Conclusion
O	0000	000		0
Our Result 2:	Proof Sketch			

1 F, g, g^a, g^b

2 Ω predicting $B_k([\phi_{h,\hat{h}}(g^{ab})]_1) = B_k(\lambda[g^{ab}]_1)$ with non-negl adv How we do it

1 Define the multiplication code

$$\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid \alpha \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

2 C meets three properties required for the framework of Akavia et al. Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha} = \Omega(\lambda, g, g^a, g^b)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients. So, we pick one coefficient at random.

Introduction	Background	Related Work	Contribution	Conclusion
O	0000	000		0
Our Result 2:	Proof Sketch			

1 F, g, g^a, g^b

2 Ω predicting $B_k([\phi_{h,\hat{h}}(g^{ab})]_1) = B_k(\lambda[g^{ab}]_1)$ with non-negl adv How we do it

1 Define the multiplication code

$$\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid \alpha \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

- 2 C meets three properties required for the framework of Akavia et al. Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha} = \Omega(\lambda, g, g^a, g^b)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
- **3** But, we only get a poly-list of degree-1 coefficients. So, we pick one coefficient at random.

Introduction	Background	Related Work	Contribution	Conclusion
O	0000		○○○○○○●	0
Our Result 3:	Bit-security of	FFB-POWFs		

Proof of second result also applies to finite field-based partial OWF

• A function f is a FFB-POWF iff

1 f is easy to compute given α

- **2** It is hard to compute $[\alpha]_1$ from $f(\alpha)$
- 3 f does not depend on a particular isomorphism class of \mathbb{F}_{p^2}

Duc and Jetchev (2012) proved this for ECB-OWF

Introduction	Background	Related Work	Contribution	Conclusion
0	0000		○○○○○○●	0
Our Result 3:	Bit-security of	FFB-POWFs		

- Proof of second result also applies to finite field-based partial OWF
- A function f is a FFB-POWF iff
 - **1** f is easy to compute given α
 - **2** It is hard to compute $[\alpha]_1$ from $f(\alpha)$
 - 3 f does not depend on a particular isomorphism class of \mathbb{F}_{p^2}

Duc and Jetchev (2012) proved this for ECB-OWF

Introduction	Background	Related Work	Contribution	Conclusion
O	0000		○○○○○○●	0
Our Result 3:	Bit-security of	FFB-POWFs		

- Proof of second result also applies to finite field-based partial OWF
- A function f is a FFB-POWF iff
 - **1** f is easy to compute given α
 - **2** It is hard to compute $\left[\alpha\right]_1$ from $f(\alpha)$
 - 3 f does not depend on a particular isomorphism class of \mathbb{F}_{p^2}
- Duc and Jetchev (2012) proved this for ECB-OWF

Introduction	Background	Related Work	Contribution	Conclusion
O	0000		0000000	●
Summary &	& Open Problei	ms		

Summary

- 1 Every bit of the EC DH secret value is hard-core
- 2 Above result also applies to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- **3** The second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

Open Problems

- **1** Extend our results to \mathbb{F}_{p^t} for t > 2
- 2 Show that DH problem over $\mathbb{F}_{p^2} o$ (Partial) DH problem over \mathbb{F}_{p^2}
- 3 Show that DH problem over $\mathbb{F}_p o$ (Partial) DH problem over \mathbb{F}_{p^2}
- **4** Find hard-core predicates for DH over \mathbb{F}_p

Introduction	Background	Related Work	Contribution	Conclusion
O	0000		0000000	●
Summary & Open Problems		ms		

Summary

- 1 Every bit of the EC DH secret value is hard-core
- 2 Above result also applies to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- **3** The second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

Open Problems

- **1** Extend our results to \mathbb{F}_{p^t} for t > 2
- **2** Show that DH problem over $\mathbb{F}_{p^2} o$ (Partial) DH problem over \mathbb{F}_{p^2}
- 3 Show that DH problem over $\mathbb{F}_p o$ (Partial) DH problem over \mathbb{F}_{p^2}
- **4** Find hard-core predicates for DH over \mathbb{F}_p