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Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit
of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field IF 2.

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.
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Diffie-Hellman Problem and its Hard-Core Predicates

DH Problem
m DH is hard in a group G = (g) iff

vV PPTA Plbr [A(G,g,g“,gb) = g“b] < negl.

Hard-Core Predicate for DH
m P:G — {0,1} is a hard-core predicate for DH problem over G iff

1
VPPTA  PrAG.g.9%¢") = P(g")] < 5 + negl
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Why We Need Hard-Core Predicates

m f(x), (g% g°) could reveal a lot of partial information about x, g® but
not about their hard-core predicates

m Hard-core predicates can be used where pseudo-randomness is needed

m Key exchange, encryption, pseudo-random generators, etc.
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LSB of RSA is hard-core - Alexi et al. (1988)
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- Hastad et al. (1993)

Every bit of RSA is hard-core - Histad and Naslund (1998)

LSB of EC-based DH secret is hard-core (in a modified model)
- Boneh and Shparlinski (2001)
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Known Hard-Core Predicates

Specific Hard-Core Predicates
m MSB of DL over [, is hard-core - Blum and Micali (1984)
m LSB of RSA is hard-core - Alexi et al. (1988)

m Each bit of DL modulo Blum integer is hard-core
- Hastad et al. (1993)

m Every bit of RSA is hard-core - Hstad and Nislund (1998)

m LSB of EC-based DH secret is hard-core (in a modified model)
- Boneh and Shparlinski (2001)

General Hard-Core Predicates

m Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)
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The Result of Boneh and Shparlinski (2001)

Highlights
m EC-based DH is hard — LSB of DH secret is hard-core

m Given  predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret

W,PW,GPW,bPW W’,PW/,aPW/,bPW/

abPy LSB([abPy]x) Q
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The Result of Akavia et al. (2003)

Highlights
m A framework for proving that a predicate 7 is hard-core for a OWF f
Approach

Define a multiplication code
C={Cy:Zy, —{£1} |z € Z,} where Cy(\)=n(\x)

Use the oracle that predicts m(x) from f(x) to construct a noisy
version of C;,

Use list-decoding techniques to find a small set of candidates for x
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More details on Akavia et al. (2003)

B C={Cy:Zy, —{x1} |z € Z,} where Cy(N\) = 7w(\- z)
m An oracle 2 predicting 7(z) given f(z)
It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C, of C,
m They assume f is homomorphic
i.e., given X and f(z) it is possible to compute f(\x)
m Noisy access to C(\) is obtained by querying the oracle on f(\z)

Concentrated Ever unction
Can be shown when 7 is any individual bit .
Igorithm that

Recoverable Given and C is a multiplication code.

finds all val

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of C,, given query access to its noisy version.
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Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations

m An elliptic curve E can be represented by a short Weierstrass equation
Wap : v=2>+ax+b for a,b e, 4a3 4 27b% £ 0

Isomorphism Classes
m W, is isomorphic to W/, . iff ' = A™%a, ' = A70b for A € F

m The isomorphism class of E is given by
W(E) = {y* = 2° + Naz + X | A € F)}
m The isomorphism ®, is easily computed as

(I))\((:C, y)) = ()‘21.7 )‘Sy)
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Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption

m DH problem over an EC instance generator £ is hard iff

VPPTA  Pr [A(E, P,aP,bP) = abP | E + 5(1%} < negl(?)

Theorem
m If DH over € is hard, then

VPPTQ | Pr[Q()\,E, P,aP,bP) = By([®(abP)],)] —

< I(¢
a,b,\ - neg( )
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What we are given

E, P, aP, bP

Q predicting By ([®y(abP)];) = Bi(A\[abP],) with non-negl adv
How we do it

Define the multiplication code

C={Cq:F; = {£1}|Q€eF,} where Co(A)=Br(\-Q.)
But ®,(-) squares A. So, following BoSh01, define
Q(V\, E, P,aP,bP) if \is a square

Q/()\7 E7 P’ aP? bP) = . . .
Bi-biased coin otherwise

C meets three properties required for the framework of Akavia et al.
Accessible ' gives us access to a noisy C’Q =Q'(\,E,P,aP,bP)
Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works
This process yields a poly-size list of candidates: either output one at
random or use Shoup's self-corrector
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Other Candidate Settings?

The Finite Field Fp2

For a given prime p, there are around p?/2 fields of the form Fpe,
all isomorphic to each other

Each such field can be represented by a monic irreducible polynomial
h(x) = 22 + hiz + hg so that the field is isomorphic to F,[z]/(h)

Then, g € IF2 is a linear polynomial g = go + g12. Let [g]; denote g;.

Also for h, h there exists an easily computable isomorphism b iy
computed by right multiplication of the coefficients by a matrix [;1; -

For example,
¢h7}}(g) = ¢h7;1([90 91])

= [90 91} X E ?\]

= [0+ pg1 Ao
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Our Result 2: Bit-security of (Partial) DH over F,.

Assumption

m DH problem over a FF instance generator F is hard iff

vV PPT A Pg AF,g,9%¢") = g™ |F« F1Y| < negl(¢)
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Assumption

m DH problem over a FF instance generator F is hard iff
¥PPTA  Pr A(F,g,6%¢") = |¢®| | F« FQ1| < negl(¢)

a linear polynomial
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Our Result 2: Bit-security of (Partial) DH over F,.

New Assumption

m (Partial) DH problem over a FF instance generator F is hard iff
VPPTA  PrlA(Fg.g% ) =[], | F = F(19)] < negl(t)

Theorem the degree-1 coefficient
m If (Partial) DH over F is hard, then

v PPTQ2

G,E}f,}} [Q(h, iL, F,gag“’gb) = Bk({(’b/m (gab)} 1)} _ B,

< negl(¥)

Proof Idea
m Apply the framework of Akavia et al.
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Our Result 2: Proof Sketch

What we are given

F.g, g% ¢

Q predicting Bk([qﬁhﬁ(gab)h) = Bi(\¢™]1) with non-negl adv
How we do it

Define the multiplication code
C={Co:F; = {£1}|aeF,2} where C,(\) = Bi(\-[al];)

C meets three properties required for the framework of Akavia et al.
Accessible € gives us access to a noisy Cy, = Q(, g, 9% ¢")
Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works
But, we only get a poly-list of degree-1 coefficients. So, we pick one
coefficient at random.
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m A function f is a FFB-POWF iff

f is easy to compute given «

It is hard to compute [a], from f(«)

f does not depend on a particular isomorphism class of I,
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Our Result 3: Bit-security of FFB-POWFs

m Proof of second result also applies to finite field-based partial OWF
m A function f is a FFB-POWF iff

f is easy to compute given «

It is hard to compute [a], from f(«)

f does not depend on a particular isomorphism class of I,

m Duc and Jetchev (2012) proved this for ECB-OWF



Conclusion
.
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Summary
Every bit of the EC DH secret value is hard-core
Above result also applies to (partial) DH problem over finite fields I,
The second result also applies to FFB-POWFs over [ 2

Our approach “augments’ the input to the computationally hard
problem with a random description of the underlying group
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Summary & Open Problems

Summary
Every bit of the EC DH secret value is hard-core
Above result also applies to (partial) DH problem over finite fields I,
The second result also applies to FFB-POWFs over [ 2

Our approach “augments’ the input to the computationally hard
problem with a random description of the underlying group

Open Problems
Extend our results to IF,x for ¢ > 2
Show that DH problem over > — (Partial) DH problem over [,
Show that DH problem over I, — (Partial) DH problem over F .
Find hard-core predicates for DH over F,
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