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Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit
of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.
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One-way Functions and Hard-Core Predicates

One-way Function
f : X → Y is a one-way function (OWF) iff

1 It is easy to compute f(x) given x ∈ X
2 It is hard to invert, i.e.,

∀ PPTA Pr
x

[f(z) = y | y = f(x), z = A(y)] ≤ negl.

Hard-Core Predicate for OWF f
P : X → {0, 1} is a hard-core predicate for f iff

∀ PPTA Pr
x

[A(f(x)) = P (x)] ≤ 1

2
+ negl.
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Diffie-Hellman Problem and its Hard-Core Predicates

DH Problem
DH is hard in a group G = 〈g〉 iff

∀ PPTA Pr
a,b

[
A(G, g, ga, gb) = gab

]
≤ negl.
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Why We Need Hard-Core Predicates

f(x), (ga, gb) could reveal a lot of partial information about x, gab but
not about their hard-core predicates
Hard-core predicates can be used where pseudo-randomness is needed

Key exchange, encryption, pseudo-random generators, etc.
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Known Hard-Core Predicates

Specific Hard-Core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)
LSB of EC-based DH secret is hard-core (in a modified model)
- Boneh and Shparlinski (2001)

General Hard-Core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)
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The Result of Boneh and Shparlinski (2001)

Highlights
EC-based DH is hard → LSB of DH secret is hard-core
Given Ω predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret

Ω

W,PW , aPW , bPW

abPW

W ′, PW ′ , aPW ′ , bPW ′

LSB([abPW ′ ]x)
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The Result of Akavia et al. (2003)

Highlights
A framework for proving that a predicate π is hard-core for a OWF f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x
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More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.
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Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
An elliptic curve E can be represented by a short Weierstrass equation

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ−4a, b′ = λ−6b for λ ∈ F×p
The isomorphism class of E is given by

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
The isomorphism Φλ is easily computed as

Φλ((x, y)) = (λ2x, λ3y)
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Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption
DH problem over an EC instance generator E is hard iff

∀ PPTA Pr
a,b

[
A(E,P, aP, bP ) = abP | E ← E(1`)

]
≤ negl(`)

Theorem
If DH over E is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,λ

[Ω(λ,E, P, aP, bP ) = Bk([Φλ(abP )]x)]− βk
∣∣∣∣ ≤ negl(`)
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Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So, following BoSh01, define

Ω′(λ,E, P, aP, bP ) =

{
Ω(
√
λ,E, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ,E, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process yields a poly-size list of candidates: either output one at
random or use Shoup’s self-corrector
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Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are around p2/2 fields of the form Fp2 ,
all isomorphic to each other
Each such field can be represented by a monic irreducible polynomial
h(x) = x2 + h1x+ h0 so that the field is isomorphic to Fp[x]/(h)

Then, g ∈ Fp2 is a linear polynomial g = g0 + g1x. Let [g]i denote gi.

Also for h, ĥ there exists an easily computable isomorphism φh,ĥ,
computed by right multiplication of the coefficients by a matrix

[
1 0
µ λ

]
.

For example,

φh,ĥ(g) = φh,ĥ(
[
g0 g1

]
)

=
[
g0 g1

]
×
[

1 0
µ λ

]
=
[
g0 + µg1 λg1

]
.
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Our Result 2: Bit-security of (Partial) DH over Fp2

Assumption
DH problem over a FF instance generator F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1gab | F ← F(1`)

]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,h,ĥ

[
Ω(h, ĥ, F, g, ga, gb) = Bk

([
φh,ĥ

(
gab
)]

1

)]
− βk

∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.
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[
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Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φh,ĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | α ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

3 But, we only get a poly-list of degree-1 coefficients. So, we pick one
coefficient at random.
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Our Result 3: Bit-security of FFB-POWFs

Proof of second result also applies to finite field-based partial OWF
A function f is a FFB-POWF iff

1 f is easy to compute given α
2 It is hard to compute [α]1 from f(α)
3 f does not depend on a particular isomorphism class of Fp2

Duc and Jetchev (2012) proved this for ECB-OWF
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Summary & Open Problems

Summary
1 Every bit of the EC DH secret value is hard-core
2 Above result also applies to (partial) DH problem over finite fields Fp2
3 The second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2
4 Find hard-core predicates for DH over Fp
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