
Hard-Core Predicates for a Diffie-Hellman Problem
over Finite Fields

N. Fazio1,2 R. Gennaro1,2 I.M. Perera2 W.E. Skeith III1,2

1The City College of CUNY
{fazio,rosario,wes}@cs.ccny.cuny.edu

2The Graduate Center of CUNY
iperera@gc.cuny.edu

CRYPTO 2013



Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit
of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.



Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit
of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.



Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit
of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.



Introduction Background Related Work Contribution Conclusion

One-way Functions and Hard-Core Predicates

One-way Function
f : X → Y is a one-way function (OWF) iff

1 It is easy to compute f(x) given x ∈ X
2 It is hard to invert, i.e.,

∀ PPTA Pr
x

[f(z) = y | y = f(x), z = A(y)] ≤ negl.

Hard-Core Predicate for OWF f
P : X → {0, 1} is a hard-core predicate for f iff

∀ PPTA Pr
x

[A(f(x)) = P (x)] ≤ 1

2
+ negl.



Introduction Background Related Work Contribution Conclusion

One-way Functions and Hard-Core Predicates

One-way Function
f : X → Y is a one-way function (OWF) iff

1 It is easy to compute f(x) given x ∈ X
2 It is hard to invert, i.e.,

∀ PPTA Pr
x

[f(z) = y | y = f(x), z = A(y)] ≤ negl.

Hard-Core Predicate for OWF f
P : X → {0, 1} is a hard-core predicate for f iff

∀ PPTA Pr
x

[A(f(x)) = P (x)] ≤ 1

2
+ negl.



Introduction Background Related Work Contribution Conclusion

Diffie-Hellman Problem and its Hard-Core Predicates

DH Problem
DH is hard in a group G = 〈g〉 iff

∀ PPTA Pr
a,b

[
A(G, g, ga, gb) = gab

]
≤ negl.

Hard-Core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem over G iff

∀ PPTA Pr
a,b

[
A(G, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.



Introduction Background Related Work Contribution Conclusion

Diffie-Hellman Problem and its Hard-Core Predicates

DH Problem
DH is hard in a group G = 〈g〉 iff

∀ PPTA Pr
a,b

[
A(G, g, ga, gb) = gab

]
≤ negl.

Hard-Core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem over G iff

∀ PPTA Pr
a,b

[
A(G, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.



Introduction Background Related Work Contribution Conclusion

Why We Need Hard-Core Predicates

f(x), (ga, gb) could reveal a lot of partial information about x, gab but
not about their hard-core predicates
Hard-core predicates can be used where pseudo-randomness is needed

Key exchange, encryption, pseudo-random generators, etc.



Introduction Background Related Work Contribution Conclusion

Why We Need Hard-Core Predicates

f(x), (ga, gb) could reveal a lot of partial information about x, gab but
not about their hard-core predicates
Hard-core predicates can be used where pseudo-randomness is needed

Key exchange, encryption, pseudo-random generators, etc.



Introduction Background Related Work Contribution Conclusion

Known Hard-Core Predicates

Specific Hard-Core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)
LSB of EC-based DH secret is hard-core (in a modified model)
- Boneh and Shparlinski (2001)

General Hard-Core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

Known Hard-Core Predicates

Specific Hard-Core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)
LSB of EC-based DH secret is hard-core (in a modified model)
- Boneh and Shparlinski (2001)

General Hard-Core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

The Result of Boneh and Shparlinski (2001)

Highlights
EC-based DH is hard → LSB of DH secret is hard-core
Given Ω predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret

Ω

W,PW , aPW , bPW

abPW

W ′, PW ′ , aPW ′ , bPW ′

LSB([abPW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
A framework for proving that a predicate π is hard-core for a OWF f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
A framework for proving that a predicate π is hard-core for a OWF f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
A framework for proving that a predicate π is hard-core for a OWF f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
A framework for proving that a predicate π is hard-core for a OWF f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.

Can be shown when π is any individual bit
and C is a multiplication code.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al. (2003)

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

An oracle Ω predicting π(x) given f(x)

It should be shown that C meets the following properties

Accessible Given f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that

finds all values x such that χ is “heavy” for Cx
Fourier-Learnable It is possible to efficiently learn all the heavy coefficients

of Cx given query access to its noisy version.

Can be shown when π is any individual bit
and C is a multiplication code.



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
An elliptic curve E can be represented by a short Weierstrass equation

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ−4a, b′ = λ−6b for λ ∈ F×p
The isomorphism class of E is given by

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
The isomorphism Φλ is easily computed as

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
An elliptic curve E can be represented by a short Weierstrass equation

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ−4a, b′ = λ−6b for λ ∈ F×p
The isomorphism class of E is given by

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
The isomorphism Φλ is easily computed as

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
An elliptic curve E can be represented by a short Weierstrass equation

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ−4a, b′ = λ−6b for λ ∈ F×p
The isomorphism class of E is given by

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
The isomorphism Φλ is easily computed as

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
An elliptic curve E can be represented by a short Weierstrass equation

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ−4a, b′ = λ−6b for λ ∈ F×p
The isomorphism class of E is given by

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
The isomorphism Φλ is easily computed as

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption
DH problem over an EC instance generator E is hard iff

∀ PPTA Pr
a,b

[
A(E,P, aP, bP ) = abP | E ← E(1`)

]
≤ negl(`)

Theorem
If DH over E is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,λ

[Ω(λ,E, P, aP, bP ) = Bk([Φλ(abP )]x)]− βk
∣∣∣∣ ≤ negl(`)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption
DH problem over an EC instance generator E is hard iff

∀ PPTA Pr
a,b

[
A(E,P, aP, bP ) = abP | E ← E(1`)

]
≤ negl(`)

Theorem
If DH over E is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,λ

[Ω(λ,E, P, aP, bP ) = Bk([Φλ(abP )]x)]− βk
∣∣∣∣ ≤ negl(`)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So, following BoSh01, define

Ω′(λ,E, P, aP, bP ) =

{
Ω(
√
λ,E, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ,E, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process yields a poly-size list of candidates: either output one at
random or use Shoup’s self-corrector



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So, following BoSh01, define

Ω′(λ,E, P, aP, bP ) =

{
Ω(
√
λ,E, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ,E, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process yields a poly-size list of candidates: either output one at
random or use Shoup’s self-corrector



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So, following BoSh01, define

Ω′(λ,E, P, aP, bP ) =

{
Ω(
√
λ,E, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ,E, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process yields a poly-size list of candidates: either output one at
random or use Shoup’s self-corrector



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So, following BoSh01, define

Ω′(λ,E, P, aP, bP ) =

{
Ω(
√
λ,E, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ,E, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process yields a poly-size list of candidates: either output one at
random or use Shoup’s self-corrector



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So, following BoSh01, define

Ω′(λ,E, P, aP, bP ) =

{
Ω(
√
λ,E, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ,E, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process yields a poly-size list of candidates: either output one at
random or use Shoup’s self-corrector



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are around p2/2 fields of the form Fp2 ,
all isomorphic to each other
Each such field can be represented by a monic irreducible polynomial
h(x) = x2 + h1x+ h0 so that the field is isomorphic to Fp[x]/(h)

Then, g ∈ Fp2 is a linear polynomial g = g0 + g1x. Let [g]i denote gi.

Also for h, ĥ there exists an easily computable isomorphism φh,ĥ,
computed by right multiplication of the coefficients by a matrix

[
1 0
µ λ

]
.

For example,

φh,ĥ(g) = φh,ĥ(
[
g0 g1

]
)

=
[
g0 g1

]
×
[

1 0
µ λ

]
=
[
g0 + µg1 λg1

]
.



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are around p2/2 fields of the form Fp2 ,
all isomorphic to each other
Each such field can be represented by a monic irreducible polynomial
h(x) = x2 + h1x+ h0 so that the field is isomorphic to Fp[x]/(h)

Then, g ∈ Fp2 is a linear polynomial g = g0 + g1x. Let [g]i denote gi.

Also for h, ĥ there exists an easily computable isomorphism φh,ĥ,
computed by right multiplication of the coefficients by a matrix

[
1 0
µ λ

]
.

For example,

φh,ĥ(g) = φh,ĥ(
[
g0 g1

]
)

=
[
g0 g1

]
×
[

1 0
µ λ

]
=
[
g0 + µg1 λg1

]
.



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are around p2/2 fields of the form Fp2 ,
all isomorphic to each other
Each such field can be represented by a monic irreducible polynomial
h(x) = x2 + h1x+ h0 so that the field is isomorphic to Fp[x]/(h)

Then, g ∈ Fp2 is a linear polynomial g = g0 + g1x. Let [g]i denote gi.

Also for h, ĥ there exists an easily computable isomorphism φh,ĥ,
computed by right multiplication of the coefficients by a matrix

[
1 0
µ λ

]
.

For example,

φh,ĥ(g) = φh,ĥ(
[
g0 g1

]
)

=
[
g0 g1

]
×
[

1 0
µ λ

]
=
[
g0 + µg1 λg1

]
.



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are around p2/2 fields of the form Fp2 ,
all isomorphic to each other
Each such field can be represented by a monic irreducible polynomial
h(x) = x2 + h1x+ h0 so that the field is isomorphic to Fp[x]/(h)

Then, g ∈ Fp2 is a linear polynomial g = g0 + g1x. Let [g]i denote gi.

Also for h, ĥ there exists an easily computable isomorphism φh,ĥ,
computed by right multiplication of the coefficients by a matrix

[
1 0
µ λ

]
.

For example,

φh,ĥ(g) = φh,ĥ(
[
g0 g1

]
)

=
[
g0 g1

]
×
[

1 0
µ λ

]
=
[
g0 + µg1 λg1

]
.



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are around p2/2 fields of the form Fp2 ,
all isomorphic to each other
Each such field can be represented by a monic irreducible polynomial
h(x) = x2 + h1x+ h0 so that the field is isomorphic to Fp[x]/(h)

Then, g ∈ Fp2 is a linear polynomial g = g0 + g1x. Let [g]i denote gi.

Also for h, ĥ there exists an easily computable isomorphism φh,ĥ,
computed by right multiplication of the coefficients by a matrix

[
1 0
µ λ

]
.

For example,

φh,ĥ(g) = φh,ĥ(
[
g0 g1

]
)

=
[
g0 g1

]
×
[

1 0
µ λ

]
=
[
g0 + µg1 λg1

]
.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

Assumption
DH problem over a FF instance generator F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1gab | F ← F(1`)

]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,h,ĥ

[
Ω(h, ĥ, F, g, ga, gb) = Bk

([
φh,ĥ

(
gab
)]

1

)]
− βk

∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

Assumption
DH problem over a FF instance generator F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1gab

a linear polynomial

| F ← F(1`)

]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,h,ĥ

[
Ω(h, ĥ, F, g, ga, gb) = Bk

([
φh,ĥ

(
gab
)]

1

)]
− βk

∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

New Assumption
(Partial) DH problem over a FF instance generator F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1

[
gab
]
1

the degree-1 coefficient

| F ← F(1`)
]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,h,ĥ

[
Ω(h, ĥ, F, g, ga, gb) = Bk

([
φh,ĥ

(
gab
)]

1

)]
− βk

∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

New Assumption
(Partial) DH problem over a FF instance generator F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1

[
gab
]
1

the degree-1 coefficient

| F ← F(1`)
]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,h,ĥ

[
Ω(h, ĥ, F, g, ga, gb) = Bk

([
φh,ĥ

(
gab
)]

1

)]
− βk

∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

New Assumption
(Partial) DH problem over a FF instance generator F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1

[
gab
]
1

the degree-1 coefficient

| F ← F(1`)
]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,h,ĥ

[
Ω(h, ĥ, F, g, ga, gb) = Bk

([
φh,ĥ

(
gab
)]

1

)]
− βk

∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φh,ĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | α ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

3 But, we only get a poly-list of degree-1 coefficients. So, we pick one
coefficient at random.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φh,ĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | α ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

3 But, we only get a poly-list of degree-1 coefficients. So, we pick one
coefficient at random.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φh,ĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | α ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

3 But, we only get a poly-list of degree-1 coefficients. So, we pick one
coefficient at random.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φh,ĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | α ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

3 But, we only get a poly-list of degree-1 coefficients. So, we pick one
coefficient at random.



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Proof of second result also applies to finite field-based partial OWF
A function f is a FFB-POWF iff

1 f is easy to compute given α
2 It is hard to compute [α]1 from f(α)
3 f does not depend on a particular isomorphism class of Fp2

Duc and Jetchev (2012) proved this for ECB-OWF



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Proof of second result also applies to finite field-based partial OWF
A function f is a FFB-POWF iff

1 f is easy to compute given α
2 It is hard to compute [α]1 from f(α)
3 f does not depend on a particular isomorphism class of Fp2

Duc and Jetchev (2012) proved this for ECB-OWF



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Proof of second result also applies to finite field-based partial OWF
A function f is a FFB-POWF iff

1 f is easy to compute given α
2 It is hard to compute [α]1 from f(α)
3 f does not depend on a particular isomorphism class of Fp2

Duc and Jetchev (2012) proved this for ECB-OWF



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 Every bit of the EC DH secret value is hard-core
2 Above result also applies to (partial) DH problem over finite fields Fp2
3 The second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2
4 Find hard-core predicates for DH over Fp



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 Every bit of the EC DH secret value is hard-core
2 Above result also applies to (partial) DH problem over finite fields Fp2
3 The second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2
4 Find hard-core predicates for DH over Fp


	Introduction
	Background
	Related Work
	Contribution
	Conclusion

