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If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit*
of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field IF 2.

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit* of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.
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It is easy to compute f(x) given z € X
It is hard to invert, i.e.,

v PPTA Pr[f(z) =y ly=f(2z), 2 = A(y)] < negl.

Hard-core Predicate for OWF f
m P: X — {0,1} is a hard-core predicate for f iff

VvV PPTA Pr [A(f(x)) = P(z)] < % + negl.
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Why We Need Hard-core Predicates

m f(x) could reveal a lot of partial information about x but not about
its hard-core predicates

m Can use hard-core predicates for any application where
pseudo-randomness is needed

m Key exchange, encryption, pseudo-random generators, etc.
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Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
m MSB of DL over I, is hard-core - Blum and Micali (1984)
m LSB of RSA is hard-core - Alexi et al. (1988)

m Each bit of DL modulo Blum integer is hard-core
- Hastad et al. (1993)

m Every bit of RSA is hard-core - Histad and Naslund (1998)
General Hard-core Predicates

m Every OWF f can be modified to obtain a OWF ¢ having a specific
hard-core bit - Goldreich and Levin (1989)
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Diffie-Hellman Problem and its Hard-core Predicates

DH Problem
m G = (g) — a group with generator g and order q. DH is hard in G iff

VY PPT A Pr A(G,q,g,g“,gb) = gab] < negl.
a,b (ﬁ Zq

Hard-core Predicate for DH
m P:G — {0,1} is a hard-core predicate for DH problem iff

1
Y PPT A Pr [.A(G,q,g,ga,gb) = P(gab) < 5 + negl.
a,b <§ Zq

o No deterministic hard-core predicate for DH is known
m But the generic (randomized) Goldreich-Levin result works

o In a modified model LSB of EC-based DH secret value is unpredictable
- Boneh and Shparlinski (2001)
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The Result of Boneh and Shparlinski (2001)

Highlights
m EC-based DH is hard — LSB of DH secret is hard-core

m Given Q predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret

m Breakthrough: Use the representation of the curve to randomize the
queries to 2

WPW,(LPW,Z)PW W’7sz/,aPW/7bPWu

abPy LSB([abPy]z) Q
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The Result of Duc and Jetchev (2012)

Highlights
m Applies to EC-based OWF (ECB-OWF)
(i.e., f does not depend on the representation of the curve)
m [ is an ECB-OWF — every bit of its input is hard-core
m Given Q predicting any bit of the input to f, invert f

m Main Idea: Apply the Boneh-Shparlinski randomization technique
together with the Akavia et al. list-decoding approach.

W7 f(Q)W WY/v f(Q)VV’

e ——

Qw Bi([Qw]2) Q

-
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The Result of Akavia et al. (2003)

Highlights
m Let f:7Z, - Y bea OWF, and 7 : Z,, — {£1} a predicate
m A framework for proving that 7 is hard-core for f

Approach

Define a multiplication code
C={Cy:Zy - {£1} |2z €Z,} where Cy(\) =7\ x)

Use the oracle that predicts m(x) from f(x) to construct a noisy
version of C,

Use list-decoding techniques to find a small set of candidates for x
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More details on Akavia et al.

C={Cy:Z, —{£1} |x €Z,} where Cy(\) =7\ 2x)
It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C, of C,

m They assume f is homomorphic

i.e., given X and f(z) it is possible to compute f(Ax)

m Noisy access to C5(\) is obtained by querying the oracle on f(\z)
Concentrated Every codeword C,. is a Fourier concentrated function

m They prove it for LSB, MSB and segment predicates

m Morillo and Rafols (2008) generalize to any bit
Recoverable Given a frequency (character) x, 3 a poly time algorithm that

finds all values x such that x is "heavy” for C,,

m Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of C,, given query access to its noisy version.
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Short Weierstrass Equations
m E — an elliptic curve

m W, — a short Weierstrass equation representing E
Wop:y> =2 +ar+b for a,beT,, da®+270* £ 0

Isomorphism Classes
m W, is isomorphic to W/, ,, iff / = N ™%a, b/ = N76b for X € F
m W(E) — the isomorphism class of E

W(E) = {y* = 2® + NMaz + A | A € F)}
m &, : F — FE — the easily computable isomorphism

(I))\((LE7 y)) = ()‘2337 )‘3y)
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Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption

m & — elliptic curve instance generator, E — an elliptic curve generated
by £, G = (P) — a cyclic subgroup of E
m DH problem over £ is hard iff

VPPTA  Pr [A(E, P,aP,bP) = abP | E + 5(15)} < negl(¢)

)

Theorem
m If DH over &€ is hard, then

VPPTQ < negl(¥)

Pr[Q(\, P.aP,bP) = Bi([®:(abP)),)] = i
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Our Result 1: Proof Sketch

What we are given

E, P, aP, bP

Q predicting By ([®)(abP)].) = Bx(\?[abP],) with non-negl adv
How we do it

Define the multiplication code

C={Cq:F; = {£1}|Q€eF,} where Co(A)=Bir(\-Q.)
But ®,(-) squares A\. So define
Q(V\, P,aP,bP) if \is a square

Q' (\, P,aP,bP) = _ _ _
Bi-biased coin otherwise

C meets three properties required for the framework of Akavia et al.
Accessible € gives us access to a noisy C’Q =Q'(\, P,aP,bP)
Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works
This process gives us a poly-size list of candidates: just output one at
random or use Shoup's self-corrector (which outputs the correct one
with high probability)
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Other Candidate Settings?

The Finite Field Fp2

For a given prime p, there are many (~ p?/2) fields Fp2,

and they are all isomorphic to each other

h(x) = 2% + hix + ho — a monic irreducible polynomial of degree 2,
I5(p) — the set of all such polynomials

Fp

We can write elements in )2 as linear polynomials

2 is isomorphic to Fy[z]/(h)

So for g € Fj2, denote g = go + g1z, [g9]i = 9i

Also for h,h € I5(p) there exists an easily computable isomorphism

O s Fulel /() — By fal/() and 6= [ 4]

Also given an isomorphism ¢; defined by a 2 x 2 matrix as above, it is
easy to find h

Note that [¢; (g)]1 = A[gh
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Our Result 2: Bit-security of (Partial) DH over F,.

Assumption

m F — finite field instance generator, ' — a finite field generated by
F, g — a generator of F

m DH problem over F is hard iff a linear polynomial

vV PPT A Pg AF, 9,0%¢") = | ¢ | F+ FQAY| < negl(?)
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Our Result 2: Bit-security of (Partial) DH over F,.

New Assumption

m F — finite field instance generator, F' — a finite field generated by
F, g — a generator of F

m (Partial) DH problem over F is hard iff the degree-1 coefficient
YPPTA  PrlA(Fa.g'.g") = [s"], | F = F(1)] < negl(t)

Theorem
m If (Partial) DH over F is hard, then

VPPTQ < negl(¥)

Pr [Q(ﬁ,g,g“,gb) = Bk([sﬁg (g“b)] 1)} — B

a,b,h

Proof Idea
m Apply the framework of Akavia et al.
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What we are given

F,g. 9% ¢

Q predicting Bi([¢; (9%)]1) = Br(A[g™]1) with non-negl adv
How we do it

Define the multiplication code a linear polynomial
C={Cy: Fy— {1} |[ale F,2} where Co(X) = Bip(X-[a]y)

C meets three properties required for the framework of Akavia et al.

Accessible € gives us access to a noisy Cy, = Q(\, g, 9% ¢")
Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works
But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)
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Our Result 3: Bit-security of FFB-POWFs

m Our Result 2 also applies to finite field-based partial one-way functions
m fis a FFB-POWF iff

f does not depend on a particular isomorphism class of I,

f is easy to compute given «

It is hard to compute [a], from f(«)
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Summary

We proved the unpredictability of every bit of the secret DH value of
the of EC DH problem over a random representation of the curve

We also extended the above result to (partial) DH problem over finite

fields FF 2
Our second result also applies to FFB-POWFs over [,
Our approach “augments” the input to the computationally hard
problem with a random description of the underlying group

Open Problems
Extend our results to IF,x for ¢ > 2
Show that DH problem over > — (Partial) DH problem over IF,

Show that DH problem over I, — (Partial) DH problem over F .
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Thank You!
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