
Challenges in Proving Hard-Core Predicates for a
Diffie-Hellman Problem

N. Fazio1,2 R. Gennaro1,2 I.M. Perera2 W.E. Skeith III1,2

1The City College of CUNY
{fazio,rosario,wes}@cs.ccny.cuny.edu

2The Graduate Center of CUNY
iperera@gc.cuny.edu

April 10, 2013



Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit∗

of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit∗ of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.



Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit∗

of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit∗ of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.



Introduction Background Related Work Contribution Conclusion

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit∗

of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit∗ of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.



Introduction Background Related Work Contribution Conclusion

One-way Functions and Hard-core Predicates

One-way Function
f : X → Y is a one-way function (OWF) iff

1 It is easy to compute f(x) given x ∈ X
2 It is hard to invert, i.e.,

∀ PPTA Pr
x

.←←$ X

[f(z) = y | y = f(x), z = A(y)] ≤ negl.

Hard-core Predicate for OWF f
P : X → {0, 1} is a hard-core predicate for f iff

∀ PPTA Pr
x

.←←$ X
[A(f(x)) = P (x)] ≤ 1

2
+ negl.



Introduction Background Related Work Contribution Conclusion

One-way Functions and Hard-core Predicates

One-way Function
f : X → Y is a one-way function (OWF) iff

1 It is easy to compute f(x) given x ∈ X
2 It is hard to invert, i.e.,

∀ PPTA Pr
x

.←←$ X

[f(z) = y | y = f(x), z = A(y)] ≤ negl.

Hard-core Predicate for OWF f
P : X → {0, 1} is a hard-core predicate for f iff

∀ PPTA Pr
x

.←←$ X
[A(f(x)) = P (x)] ≤ 1

2
+ negl.



Introduction Background Related Work Contribution Conclusion

Why We Need Hard-core Predicates

f(x) could reveal a lot of partial information about x but not about
its hard-core predicates
Can use hard-core predicates for any application where
pseudo-randomness is needed

Key exchange, encryption, pseudo-random generators, etc.



Introduction Background Related Work Contribution Conclusion

Why We Need Hard-core Predicates

f(x) could reveal a lot of partial information about x but not about
its hard-core predicates
Can use hard-core predicates for any application where
pseudo-randomness is needed

Key exchange, encryption, pseudo-random generators, etc.



Introduction Background Related Work Contribution Conclusion

Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)

General Hard-core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)

General Hard-core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)

General Hard-core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)

General Hard-core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)

General Hard-core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)



Introduction Background Related Work Contribution Conclusion

Diffie-Hellman Problem and its Hard-core Predicates

DH Problem
G = 〈g〉 — a group with generator g and order q. DH is hard in G iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = gab

]
≤ negl.

Hard-core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.

◦ No deterministic hard-core predicate for DH is known
But the generic (randomized) Goldreich-Levin result works

◦ In a modified model LSB of EC-based DH secret value is unpredictable
- Boneh and Shparlinski (2001)



Introduction Background Related Work Contribution Conclusion

Diffie-Hellman Problem and its Hard-core Predicates

DH Problem
G = 〈g〉 — a group with generator g and order q. DH is hard in G iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = gab

]
≤ negl.

Hard-core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.

◦ No deterministic hard-core predicate for DH is known
But the generic (randomized) Goldreich-Levin result works

◦ In a modified model LSB of EC-based DH secret value is unpredictable
- Boneh and Shparlinski (2001)



Introduction Background Related Work Contribution Conclusion

Diffie-Hellman Problem and its Hard-core Predicates

DH Problem
G = 〈g〉 — a group with generator g and order q. DH is hard in G iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = gab

]
≤ negl.

Hard-core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.

◦ No deterministic hard-core predicate for DH is known
But the generic (randomized) Goldreich-Levin result works

◦ In a modified model LSB of EC-based DH secret value is unpredictable
- Boneh and Shparlinski (2001)



Introduction Background Related Work Contribution Conclusion

Diffie-Hellman Problem and its Hard-core Predicates

DH Problem
G = 〈g〉 — a group with generator g and order q. DH is hard in G iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = gab

]
≤ negl.

Hard-core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.

◦ No deterministic hard-core predicate for DH is known
But the generic (randomized) Goldreich-Levin result works

◦ In a modified model LSB of EC-based DH secret value is unpredictable
- Boneh and Shparlinski (2001)



Introduction Background Related Work Contribution Conclusion

The Result of Boneh and Shparlinski (2001)

Highlights
EC-based DH is hard → LSB of DH secret is hard-core
Given Ω predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret
Breakthrough: Use the representation of the curve to randomize the
queries to Ω

Ω

W,PW , aPW , bPW

abPW

W ′, PW ′ , aPW ′ , bPW ′

LSB([abPW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Boneh and Shparlinski (2001)

Highlights
EC-based DH is hard → LSB of DH secret is hard-core
Given Ω predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret
Breakthrough: Use the representation of the curve to randomize the
queries to Ω

Ω

W,PW , aPW , bPW

abPW

W ′, PW ′ , aPW ′ , bPW ′

LSB([abPW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Boneh and Shparlinski (2001)

Highlights
EC-based DH is hard → LSB of DH secret is hard-core
Given Ω predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret
Breakthrough: Use the representation of the curve to randomize the
queries to Ω

Ω

W,PW , aPW , bPW

abPW

W ′, PW ′ , aPW ′ , bPW ′

LSB([abPW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Duc and Jetchev (2012)

Highlights
Applies to EC-based OWF (ECB-OWF)
(i.e., f does not depend on the representation of the curve)
f is an ECB-OWF → every bit of its input is hard-core
Given Ω predicting any bit of the input to f , invert f
Main Idea: Apply the Boneh-Shparlinski randomization technique
together with the Akavia et al. list-decoding approach.

Ω

W, f(Q)W

QW

W ′, f(Q)W ′

Bk([QW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Duc and Jetchev (2012)

Highlights
Applies to EC-based OWF (ECB-OWF)
(i.e., f does not depend on the representation of the curve)
f is an ECB-OWF → every bit of its input is hard-core
Given Ω predicting any bit of the input to f , invert f
Main Idea: Apply the Boneh-Shparlinski randomization technique
together with the Akavia et al. list-decoding approach.

Ω

W, f(Q)W

QW

W ′, f(Q)W ′

Bk([QW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Duc and Jetchev (2012)

Highlights
Applies to EC-based OWF (ECB-OWF)
(i.e., f does not depend on the representation of the curve)
f is an ECB-OWF → every bit of its input is hard-core
Given Ω predicting any bit of the input to f , invert f
Main Idea: Apply the Boneh-Shparlinski randomization technique
together with the Akavia et al. list-decoding approach.

Ω

W, f(Q)W

QW

W ′, f(Q)W ′

Bk([QW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Duc and Jetchev (2012)

Highlights
Applies to EC-based OWF (ECB-OWF)
(i.e., f does not depend on the representation of the curve)
f is an ECB-OWF → every bit of its input is hard-core
Given Ω predicting any bit of the input to f , invert f
Main Idea: Apply the Boneh-Shparlinski randomization technique
together with the Akavia et al. list-decoding approach.

Ω

W, f(Q)W

QW

W ′, f(Q)W ′

Bk([QW ′ ]x)



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
Let f : Zn → Y be a OWF, and π : Zn → {±1} a predicate
A framework for proving that π is hard-core for f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
Let f : Zn → Y be a OWF, and π : Zn → {±1} a predicate
A framework for proving that π is hard-core for f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
Let f : Zn → Y be a OWF, and π : Zn → {±1} a predicate
A framework for proving that π is hard-core for f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

The Result of Akavia et al. (2003)

Highlights
Let f : Zn → Y be a OWF, and π : Zn → {±1} a predicate
A framework for proving that π is hard-core for f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
E — an elliptic curve
Wa,b — a short Weierstrass equation representing E

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ′−4a, b′ = λ′−6b for λ′ ∈ F×p
W(E) — the isomorphism class of E

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
Φλ : E → E — the easily computable isomorphism

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
E — an elliptic curve
Wa,b — a short Weierstrass equation representing E

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ′−4a, b′ = λ′−6b for λ′ ∈ F×p
W(E) — the isomorphism class of E

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
Φλ : E → E — the easily computable isomorphism

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
E — an elliptic curve
Wa,b — a short Weierstrass equation representing E

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ′−4a, b′ = λ′−6b for λ′ ∈ F×p
W(E) — the isomorphism class of E

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
Φλ : E → E — the easily computable isomorphism

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
E — an elliptic curve
Wa,b — a short Weierstrass equation representing E

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ′−4a, b′ = λ′−6b for λ′ ∈ F×p
W(E) — the isomorphism class of E

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
Φλ : E → E — the easily computable isomorphism

Φλ((x, y)) = (λ2x, λ3y)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption
E — elliptic curve instance generator, E — an elliptic curve generated
by E , G = 〈P 〉 — a cyclic subgroup of E
DH problem over E is hard iff

∀ PPTA Pr
a,b

[
A(E,P, aP, bP ) = abP | E ← E(1`)

]
≤ negl(`)

Theorem
If DH over E is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,λ

[Ω(λ, P, aP, bP ) = Bk([Φλ(abP )]x)]− βk
∣∣∣∣ ≤ negl(`)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption
E — elliptic curve instance generator, E — an elliptic curve generated
by E , G = 〈P 〉 — a cyclic subgroup of E
DH problem over E is hard iff

∀ PPTA Pr
a,b

[
A(E,P, aP, bP ) = abP | E ← E(1`)

]
≤ negl(`)

Theorem
If DH over E is hard, then

∀ PPTΩ

∣∣∣∣ Pr
a,b,λ

[Ω(λ, P, aP, bP ) = Bk([Φλ(abP )]x)]− βk
∣∣∣∣ ≤ negl(`)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

Assumption
F — finite field instance generator, F — a finite field generated by
F , g — a generator of F
DH problem over F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1gab | F ← F(1`)

]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣∣ Pr
a,b,ĥ

[
Ω(ĥ, g, ga, gb) = Bk

([
φĥ

(
gab
)]

1

)]
− βk

∣∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

Assumption
F — finite field instance generator, F — a finite field generated by
F , g — a generator of F
DH problem over F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1gab

a linear polynomial

| F ← F(1`)

]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣∣ Pr
a,b,ĥ

[
Ω(ĥ, g, ga, gb) = Bk

([
φĥ

(
gab
)]

1

)]
− βk

∣∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

New Assumption
F — finite field instance generator, F — a finite field generated by
F , g — a generator of F
(Partial) DH problem over F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1

[
gab
]
1

the degree-1 coefficient

| F ← F(1`)
]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣∣ Pr
a,b,ĥ

[
Ω(ĥ, g, ga, gb) = Bk

([
φĥ

(
gab
)]

1

)]
− βk

∣∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

New Assumption
F — finite field instance generator, F — a finite field generated by
F , g — a generator of F
(Partial) DH problem over F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1

[
gab
]
1

the degree-1 coefficient

| F ← F(1`)
]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣∣ Pr
a,b,ĥ

[
Ω(ĥ, g, ga, gb) = Bk

([
φĥ

(
gab
)]

1

)]
− βk

∣∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Bit-security of (Partial) DH over Fp2

New Assumption
F — finite field instance generator, F — a finite field generated by
F , g — a generator of F
(Partial) DH problem over F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1

[
gab
]
1

the degree-1 coefficient

| F ← F(1`)
]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣∣ Pr
a,b,ĥ

[
Ω(ĥ, g, ga, gb) = Bk

([
φĥ

(
gab
)]

1

)]
− βk

∣∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα

a linear polynomial

∈ Fp2
}

where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα

a linear polynomial

∈ Fp2
}

where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα

a linear polynomial

∈ Fp2
}

where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα

a linear polynomial

∈ Fp2
}

where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα

a linear polynomial

∈ Fp2
}

where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα

a linear polynomial

∈ Fp2
}

where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Our Result 2 also applies to finite field-based partial one-way functions
f is a FFB-POWF iff

1 f does not depend on a particular isomorphism class of Fp2

2 f is easy to compute given α
3 It is hard to compute [α]1 from f(α)



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Our Result 2 also applies to finite field-based partial one-way functions
f is a FFB-POWF iff

1 f does not depend on a particular isomorphism class of Fp2

2 f is easy to compute given α
3 It is hard to compute [α]1 from f(α)



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Our Result 2 also applies to finite field-based partial one-way functions
f is a FFB-POWF iff

1 f does not depend on a particular isomorphism class of Fp2

2 f is easy to compute given α
3 It is hard to compute [α]1 from f(α)



Introduction Background Related Work Contribution Conclusion

Our Result 3: Bit-security of FFB-POWFs

Our Result 2 also applies to finite field-based partial one-way functions
f is a FFB-POWF iff

1 f does not depend on a particular isomorphism class of Fp2

2 f is easy to compute given α
3 It is hard to compute [α]1 from f(α)



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2



Introduction Background Related Work Contribution Conclusion

Thank You!


	Introduction
	Background
	Related Work
	Contribution
	Conclusion

