Challenges in Proving Hard-Core Predicates for a Diffie-Hellman Problem

N. Fazio^{1,2} R. Gennaro^{1,2} I.M. Perera² W.E. Skeith III^{1,2}

¹The City College of CUNY {fazio,rosario,wes}@cs.ccny.cuny.edu

²The Graduate Center of CUNY iperera@gc.cuny.edu

April 10, 2013

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit* of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field \mathbb{F}_{p^2}

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit* of the input to a finite field-based partial one-way function (FFB-POWF) is unpredictable.

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit* of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field \mathbb{F}_{p^2} .

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit* of the input to a finite field-based partial one-way function (FFB-POWF) is unpredictable.

Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit* of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields

Extension of Result 1 to (partial) DH problem over the finite field \mathbb{F}_{p^2} .

Result 3: Bit-security of Finite Field-based Partial OWF

Every bit* of the input to a finite field-based partial one-way function (FFB-POWF) is unpredictable.

One-way Function

- $f: \mathcal{X} \to \mathcal{Y}$ is a one-way function (OWF) iff
 - 1 It is easy to compute f(x) given $x \in \mathcal{X}$
 - 2 It is hard to invert, i.e.,

$$\forall \ \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{x \ \stackrel{\$}{\longleftarrow} \ \mathcal{X}} \left[f(z) = y \mid y = f(x), \ z = \mathcal{A}(y) \right] \leq \mathsf{negl}.$$

Hard-core Predicate for OWF

 $ightharpoonup P: \mathcal{X} o \{0,1\}$ is a hard-core predicate for f iff

$$\forall \mathsf{PPT} \mathcal{A} \qquad \Pr_{x \overset{\$}{\rightleftharpoons} \mathcal{X}} \left[\mathcal{A}(f(x)) = P(x) \right] \leq \frac{1}{2} + \mathsf{negl}.$$

One-way Function

- $f: \mathcal{X} \to \mathcal{Y}$ is a one-way function (OWF) iff
 - 1 It is easy to compute f(x) given $x \in \mathcal{X}$
 - 2 It is hard to invert, i.e.,

$$\forall \ \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{x \, \stackrel{\P}{\longleftarrow} \, \mathcal{X}} \left[f(z) = y \mid y = f(x), \, z = \mathcal{A}(y) \right] \leq \mathsf{negl}.$$

Hard-core Predicate for OWF *f*

 $lackbox{$\blacksquare$} P: \mathcal{X} \rightarrow \{0,1\}$ is a hard-core predicate for f iff

$$\forall \ \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{x \, \overset{\$}{\not \otimes} \, \mathcal{X}} \left[\mathcal{A}(f(x)) = P(x) \right] \leq \frac{1}{2} + \mathsf{negl}.$$

Why We Need Hard-core Predicates

- f(x) could reveal a lot of partial information about x but not about its hard-core predicates
- Can use hard-core predicates for any application where pseudo-randomness is needed
 - Key exchange, encryption, pseudo-random generators, etc.

Why We Need Hard-core Predicates

- f(x) could reveal a lot of partial information about x but not about its hard-core predicates
- Can use hard-core predicates for any application where pseudo-randomness is needed
 - Key exchange, encryption, pseudo-random generators, etc.

Specific Hard-core Predicates

- MSB of DL over \mathbb{F}_p is hard-core Blum and Micali (1984)
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)

General Hard-core Predicates

Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - Goldreich and Levin (1989)

Specific Hard-core Predicates

- MSB of DL over \mathbb{F}_p is hard-core Blum and Micali (1984)
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core
 Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)

General Hard-core Predicates

■ Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - Goldreich and Levin (1989)

Specific Hard-core Predicates

- MSB of DL over \mathbb{F}_p is hard-core Blum and Micali (1984)
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core
 Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)

General Hard-core Predicates

Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - Goldreich and Levin (1989)

Specific Hard-core Predicates

- MSB of DL over \mathbb{F}_p is hard-core Blum and Micali (1984)
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core
 Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)

General Hard-core Predicates

■ Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - Goldreich and Levin (1989)

Specific Hard-core Predicates

- MSB of DL over \mathbb{F}_p is hard-core Blum and Micali (1984)
- LSB of RSA is hard-core Alexi et al. (1988)
- Each bit of DL modulo Blum integer is hard-core
 Håstad et al. (1993)
- Every bit of RSA is hard-core Håstad and Näslund (1998)

General Hard-core Predicates

■ Every OWF f can be modified to obtain a OWF g having a specific hard-core bit - *Goldreich and Levin (1989)*

DH Problem

 \blacksquare $\mathbb{G} = \langle g \rangle$ — a group with generator g and order g. DH is hard in \mathbb{G} iff

$$\forall \; \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{a,b} \; \overset{\$}{\underset{\xi^{\$}}{\subset}} \; \mathbb{Z}_q \Big[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = g^{ab} \Big] \leq \mathsf{negl}.$$

Hard-core Predicate for DF

 $ightharpoonup P:\mathbb{G} o\{0,1\}$ is a hard-core predicate for DH problem iff

$$\forall \ \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b \ \overset{\$}{\longleftarrow} \ \mathbb{Z}_q} \left[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = P(g^{ab}) \right] \leq \frac{1}{2} + \mathsf{negl}$$

- No deterministic hard-core predicate for DH is known
 - But the generic (randomized) Goldreich-Levin result works
- In a modified model LSB of EC-based DH secret value is unpredictable
 Boneh and Shparlinski (2001)

DH Problem

 \blacksquare $\mathbb{G}=\langle g \rangle$ — a group with generator g and order q. DH is hard in \mathbb{G} iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \; \underset{\$}{\overset{\$}{\underset{\mathbb{Z}_q}{\oplus}}} \left[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = g^{ab} \right] \leq \mathsf{negl}.$$

Hard-core Predicate for DH

 $ightharpoonup P: \mathbb{G}
ightarrow \{0,1\}$ is a hard-core predicate for DH problem iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b \; \stackrel{\P}{\overset{\$}} \; \mathbb{Z}_q} \Big[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = P(g^{ab}) \Big] \leq \frac{1}{2} + \mathsf{negl}.$$

- No deterministic hard-core predicate for DH is known
 - But the generic (randomized) Goldreich-Levin result works
- In a modified model LSB of EC-based DH secret value is unpredictable
 Boneh and Shparlinski (2001)

DH Problem

 \blacksquare $\mathbb{G}=\langle g \rangle$ — a group with generator g and order q. DH is hard in \mathbb{G} iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b \; \stackrel{\$}{\overset{\$}}{\overset{}}{\mathbb{Z}_q}} \Big[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = g^{ab} \Big] \leq \mathsf{negl}.$$

Hard-core Predicate for DH

 $lackbox{$\blacksquare$} P:\mathbb{G}
ightarrow \{0,1\}$ is a hard-core predicate for DH problem iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b \; \stackrel{\$}{\overset{\$}}{\overset{\mathbb{Z}}}_q} \Big[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = P(g^{ab}) \Big] \leq \frac{1}{2} + \mathsf{negl}.$$

- No deterministic hard-core predicate for DH is known
 - But the generic (randomized) Goldreich-Levin result works
- In a modified model LSB of EC-based DH secret value is unpredictable
 Boneh and Shparlinski (2001)

DH Problem

 \blacksquare $\mathbb{G} = \langle g \rangle$ — a group with generator g and order g. DH is hard in \mathbb{G} iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \; \overset{\$}{\underset{\mathbb{Z}_q}{\longleftarrow}} \left[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = g^{ab} \right] \leq \mathsf{negl}.$$

Hard-core Predicate for DH

 $lackbox{$\blacksquare$} P:\mathbb{G}
ightarrow \{0,1\}$ is a hard-core predicate for DH problem iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b \; \stackrel{\$}{\underset{}{\leftarrow} \; \mathbb{Z}_q}} \Big[\mathcal{A}(\mathbb{G},q,g,g^a,g^b) = P(g^{ab}) \Big] \leq \frac{1}{2} + \mathsf{negl}.$$

- No deterministic hard-core predicate for DH is known
 - But the generic (randomized) Goldreich-Levin result works
- In a modified model LSB of EC-based DH secret value is unpredictable
 Boneh and Shparlinski (2001)

The Result of Boneh and Shparlinski (2001)

- EC-based DH is hard → LSB of DH secret is hard-core
- lacktriangle Given Ω predicting LSB of DH secret over a random representation of the curve, recover the entire DH secret
- lacktriangle Breakthrough: Use the representation of the curve to randomize the queries to Ω

The Result of Boneh and Shparlinski (2001)

- EC-based DH is hard → LSB of DH secret is hard-core
- lacktriangle Given Ω predicting LSB of DH secret over a random representation of the curve, recover the entire DH secret
- \blacksquare Breakthrough: Use the representation of the curve to randomize the queries to Ω

The Result of Boneh and Shparlinski (2001)

- EC-based DH is hard → LSB of DH secret is hard-core
- lacktriangle Given Ω predicting LSB of DH secret over a random representation of the curve, recover the entire DH secret
- \blacksquare Breakthrough: Use the representation of the curve to randomize the queries to Ω

- Applies to EC-based OWF (ECB-OWF)
 (i.e., f does not depend on the representation of the curve)
- lacksquare f is an ECB-OWF ightarrow every bit of its input is hard-core
- lacksquare Given Ω predicting any bit of the input to f, invert f
- Main Idea: Apply the Boneh-Shparlinski randomization technique together with the Akavia et al. list-decoding approach.

- Applies to EC-based OWF (ECB-OWF)
 (i.e., f does not depend on the representation of the curve)
- lacktriangledown f is an ECB-OWF ightarrow every bit of its input is hard-core
- \blacksquare Given Ω predicting any bit of the input to f, invert f
- Main Idea: Apply the Boneh-Shparlinski randomization technique together with the Akavia et al. list-decoding approach.

- Applies to EC-based OWF (ECB-OWF)
 (i.e., f does not depend on the representation of the curve)
- lacksquare f is an ECB-OWF ightarrow every bit of its input is hard-core
- Given Ω predicting any bit of the input to f, invert f
- Main Idea: Apply the Boneh-Shparlinski randomization technique together with the Akavia et al. list-decoding approach.

- Applies to EC-based OWF (ECB-OWF)
 (i.e., f does not depend on the representation of the curve)
- $lue{f}$ is an ECB-OWF ightarrow every bit of its input is hard-core
- lacksquare Given Ω predicting any bit of the input to f, invert f
- Main Idea: Apply the Boneh-Shparlinski randomization technique together with the Akavia et al. list-decoding approach.

Highlights

- Let $f: \mathbb{Z}_n \to \mathcal{Y}$ be a OWF, and $\pi: \mathbb{Z}_n \to \{\pm 1\}$ a predicate
- lacksquare A framework for proving that π is hard-core for f

Approach

$$\mathcal{C} = \{C_x : \mathbb{Z}_n o \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

- Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- Use list-decoding techniques to find a small set of candidates for an armonic set of candidates for an armonic set of candidates for armonic set of candidates.

Highlights

- Let $f: \mathbb{Z}_n \to \mathcal{Y}$ be a OWF, and $\pi: \mathbb{Z}_n \to \{\pm 1\}$ a predicate
- lacksquare A framework for proving that π is hard-core for f

Approach

$$\mathcal{C} = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\} \quad \text{where} \quad C_x(\lambda) = \pi(\lambda \cdot x)$$

- 2 Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- $oxed{3}$ Use list-decoding techniques to find a small set of candidates for x

Highlights

- Let $f: \mathbb{Z}_n \to \mathcal{Y}$ be a OWF, and $\pi: \mathbb{Z}_n \to \{\pm 1\}$ a predicate
- lacksquare A framework for proving that π is hard-core for f

Approach

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

- 2 Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- lacksquare Use list-decoding techniques to find a small set of candidates for x

Highlights

- Let $f: \mathbb{Z}_n \to \mathcal{Y}$ be a OWF, and $\pi: \mathbb{Z}_n \to \{\pm 1\}$ a predicate
- lacktriangle A framework for proving that π is hard-core for f

Approach

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

- 2 Use the oracle that predicts $\pi(x)$ from f(x) to construct a noisy version of C_x
- ${f 3}$ Use list-decoding techniques to find a small set of candidates for x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that $\mathcal C$ meets the following properties

Accessible Given y=f(x), it is possible to get a "noisy" $ilde{C}_x$ of C_z

i.e., given λ and f(x) it is possible to compute $f(\lambda x)$

m. Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda a)$

Concentrated Every codeword C_x is a Fourier concentrated function

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- \blacksquare They assume f is homomorphic
 - i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

Recoverable. Given a frequency (character) χ_i = a poly time algorithm that finds all values x such that χ is "heavy" for C_x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

I hey prove it for LSB, MSB and segment predict
 Modifie and Rafols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- \blacksquare Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

- They prove it for LSB, MSB and segment predicates
- Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- \blacksquare Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

- They prove it for LSB, MSB and segment predicates
- Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- \blacksquare Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

- They prove it for LSB, MSB and segment predicates
- Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

Easy consequence of being a multiplication code

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

- They prove it for LSB, MSB and segment predicates
- Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

Easy consequence of being a multiplication code

More details on Akavia et al.

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- lacksquare Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

- They prove it for LSB, MSB and segment predicates
- Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

■ Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients of C_x given query access to its noisy version.

More details on Akavia et al.

$$C = \{C_x : \mathbb{Z}_n \to \{\pm 1\} \mid x \in \mathbb{Z}_n\}$$
 where $C_x(\lambda) = \pi(\lambda \cdot x)$

It should be shown that ${\mathcal C}$ meets the following properties

Accessible Given y = f(x), it is possible to get a "noisy" \tilde{C}_x of C_x

- They assume f is homomorphic i.e., given λ and f(x) it is possible to compute $f(\lambda x)$
- Noisy access to $C_x(\lambda)$ is obtained by querying the oracle on $f(\lambda x)$

Concentrated Every codeword C_x is a Fourier concentrated function

- They prove it for LSB, MSB and segment predicates
- Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ , \exists a poly time algorithm that finds all values x such that χ is "heavy" for C_x

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients of C_x given query access to its noisy version.

Short Weierstrass Equations

- \blacksquare E an elliptic curve
- $W_{a,b}$ a short Weierstrass equation representing E

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

■ $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda'^{-4}a$, $b' = \lambda'^{-6}b$ for $\lambda' \in \mathbb{F}_p^{>}$ ■ $\mathcal{W}(E)$ — the isomorphism class of E

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

 $lacksquare \Phi_{\lambda}: E
ightarrow E$ — the easily computable isomorphism

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

Short Weierstrass Equations

- \blacksquare E an elliptic curve
- $W_{a,b}$ a short Weierstrass equation representing E

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

- $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda'^{-4}a$, $b' = \lambda'^{-6}b$ for $\lambda' \in \mathbb{F}_p^{\times}$
- $\longrightarrow \mathcal{W}(E)$ the isomorphism class of E

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

Short Weierstrass Equations

- $\blacksquare E$ an elliptic curve
- $W_{a,b}$ a short Weierstrass equation representing E

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

- $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda'^{-4}a$, $b' = \lambda'^{-6}b$ for $\lambda' \in \mathbb{F}_p^{\times}$
- $\blacksquare \mathcal{W}(E)$ the isomorphism class of E

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 a x + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

 $lack \Phi_{\lambda}: E \to E$ — the easily computable isomorphism

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

Short Weierstrass Equations

- $\blacksquare E$ an elliptic curve
- $W_{a,b}$ a short Weierstrass equation representing E

$$W_{a,b}: y^2 = x^3 + ax + b$$
 for $a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0$

Isomorphism Classes

- $W_{a,b}$ is isomorphic to $W'_{a',b'}$ iff $a' = \lambda'^{-4}a$, $b' = \lambda'^{-6}b$ for $\lambda' \in \mathbb{F}_n^{\times}$
- $\blacksquare \mathcal{W}(E)$ the isomorphism class of E

$$\mathcal{W}(E) = \left\{ y^2 = x^3 + \lambda^4 ax + \lambda^6 b \mid \lambda \in \mathbb{F}_p^{\times} \right\}$$

 $lack \Phi_{\lambda}: E \to E$ — the easily computable isomorphism

$$\Phi_{\lambda}((x,y)) = (\lambda^2 x, \lambda^3 y)$$

Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption

- \mathcal{E} elliptic curve instance generator, E an elliptic curve generated by \mathcal{E} , $\mathbb{G} = \langle P \rangle$ a cyclic subgroup of E
- lacksquare DH problem over ${\mathcal E}$ is hard iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(E,P,aP,bP) = abP \; | \; E \leftarrow \mathcal{E}(1^{\ell}) \Big] \leq \mathsf{negl}(\ell)$$

Theorem

 \blacksquare If DH over $\mathcal E$ is hard, then

$$\forall \, \mathsf{PPT} \, \Omega \qquad \left| \Pr_{a,b,\lambda} [\Omega(\lambda,P,aP,bP) = B_k([\Phi_{\lambda}(abP)]_x)] - \beta_k \right| \leq \mathsf{negl}(\ell)$$

Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption

- \mathcal{E} elliptic curve instance generator, E an elliptic curve generated by \mathcal{E} , $\mathbb{G} = \langle P \rangle$ a cyclic subgroup of E
- lacksquare DH problem over ${\mathcal E}$ is hard iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(E,P,aP,bP) = abP \; | \; E \leftarrow \mathcal{E}(1^\ell) \Big] \leq \mathsf{negl}(\ell)$$

Theorem

■ If DH over \mathcal{E} is hard, then

$$\forall \operatorname{PPT}\Omega \qquad \left|\Pr_{a,b,\pmb{\lambda}}[\Omega(\pmb{\lambda},P,aP,bP) = B_k([\Phi_{\pmb{\lambda}}(abP)]_x)] - \beta_k\right| \leq \operatorname{negl}(\ell)$$

What we are given

- \blacksquare E, P, aP, bP
- ${\bf 2} \ \Omega$ predicting $B_k([\Phi_{\lambda}(abP)]_x)=B_k(\lambda^2[abP]_x)$ with non-negl adv

How we do it

Define the multiplication code

$$\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} o \{\pm 1\} \mid Q \in \mathbb{F}_p
ight\} \quad ext{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

But $\Phi_{\lambda}(\cdot)$ squares λ . So define

$$\Omega'(\lambda,P,aP,bP) = \begin{cases} \Omega(\sqrt{\lambda},P,aP,bP) & \text{if } \lambda \text{ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

C meets three properties required for the framework of Akavia et al

This process gives us a poly-size list of candidates: just output one as poly-size list of candidates; just output one as and or use Shoup's self-corrector (which outputs the correct one with high probability).

What we are given

- \blacksquare E, P, aP, bP
- 2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv How we do it
 - 1 Define the multiplication code

$$\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

$$\Omega'(\lambda, P, aP, bP) = \begin{cases} \Omega(\sqrt{\lambda}, P, aP, bP) & \text{if } \lambda \text{ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

- 3 ${\cal C}$ meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy $C_0=\Omega'(\lambda,P,aP,bP)$
- This process gives us a poly-size list of candidates: just output one at random or use Shoup's self-corrector (which outputs the correct one with high probability)

What we are given

- \blacksquare E, P, aP, bP
- 2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv How we do it
 - 1 Define the multiplication code

$$\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^\times \to \{\pm 1\} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

$$\Omega'(\lambda,P,aP,bP) = \begin{cases} \Omega(\sqrt{\lambda},P,aP,bP) & \text{if } \lambda \text{ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

- 3 ${\cal C}$ meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy $\bar{C}_Q=\Omega'(\lambda,P,aP,bP)$ Concentrated Codewords are Fourier concentrated
 - Recoverable The recovery algorithm of Akavia et al. also works
- This process gives us a poly-size list of candidates: just output one at random or use Shoup's self-corrector (which outputs the correct one with high probability)

What we are given

- \blacksquare E, P, aP, bP
- 2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv How we do it
 - 1 Define the multiplication code

$$\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

$$\Omega'(\lambda,P,aP,bP) = \begin{cases} \Omega(\sqrt{\lambda},P,aP,bP) & \text{if } \lambda \text{ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

- 3 $\mathcal C$ meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy $\tilde C_Q=\Omega'(\lambda,P,aP,bP)$ Concentrated Codewords are Fourier concentrated Recoverable. The recovery algorithm of Akavia et al. also works
- This process gives us a poly-size list of candidates: just output one at random or use Shoup's self-corrector (which outputs the correct one with high probability)

What we are given

- \blacksquare E, P, aP, bP
- 2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv How we do it
 - 1 Define the multiplication code

$$\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

2 But $\Phi_{\lambda}(\cdot)$ squares λ . So define

$$\Omega'(\lambda,P,aP,bP) = \begin{cases} \Omega(\sqrt{\lambda},P,aP,bP) & \text{if } \lambda \text{ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

3 ${\cal C}$ meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy $\tilde{C}_Q=\Omega'(\lambda,P,aP,bP)$ Concentrated Codewords are Fourier concentrated

Recoverable The recovery algorithm of Akavia et al. also works

This process gives us a poly-size list of candidates: just output one at random or use Shoup's self-corrector (which outputs the correct one with high probability)

What we are given

- \blacksquare E, P, aP, bP
- 2 Ω predicting $B_k([\Phi_\lambda(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv How we do it
 - 1 Define the multiplication code

$$\mathcal{C} = \left\{ C_Q : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid Q \in \mathbb{F}_p \right\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

$$\Omega'(\lambda,P,aP,bP) = \begin{cases} \Omega(\sqrt{\lambda},P,aP,bP) & \text{if } \lambda \text{ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

- 3 ${\mathcal C}$ meets three properties required for the framework of Akavia et al. Accessible Ω' gives us access to a noisy $\tilde{C}_Q=\Omega'(\lambda,P,aP,bP)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works
- 4 This process gives us a poly-size list of candidates: just output one at random or use Shoup's self-corrector (which outputs the correct one with high probability)

What we are given

Introduction

- \blacksquare E. P. aP. bP
- Ω predicting $B_k([\Phi_{\lambda}(abP)]_x) = B_k(\lambda^2[abP]_x)$ with non-negl adv How we do it
 - 1 Define the multiplication code

$$\mathcal{C} = \{C_Q : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid Q \in \mathbb{F}_p\} \quad \text{where} \quad C_Q(\lambda) = B_k(\lambda \cdot Q_x)$$

2 But $\Phi_{\lambda}(\cdot)$ squares λ . So define

$$\Omega'(\lambda,P,aP,bP) = \begin{cases} \Omega(\sqrt{\lambda},P,aP,bP) & \text{if λ is a square} \\ \beta_k\text{-biased coin} & \text{otherwise} \end{cases}$$

 \mathcal{C} meets three properties required for the framework of Akavia et al.

Accessible Ω' gives us access to a noisy $\tilde{C}_Q = \Omega'(\lambda, P, aP, bP)$ Concentrated Codewords are Fourier concentrated

Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at random or use Shoup's self-corrector (which outputs the correct one with high probability)

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- \blacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- lacksquare We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g\in\mathbb{F}_{p^2}$, denote $g=g_0+g_1x,\,[g]_i=g_i$
- lacktriangle Also for $h,h\in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) \to \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = \begin{bmatrix} 1 & \mu \\ 0 & \lambda \end{bmatrix}$$

- Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2 \times 2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{k}}(g)]_1 = \lambda[g]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- \blacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- \blacksquare We can write elements in \mathbb{F}_{p^2} as linear polynomials
- So for $g \in \mathbb{F}_{p^2}$, denote $g = g_0 + g_1 x$, $[g]_i = g_i$
- \blacksquare Also for $h, h \in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) \to \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = \begin{bmatrix} 1 & \mu \\ 0 & \lambda \end{bmatrix}$$

- Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2 imes 2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{i}}(q)]_1 = \lambda[q]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- lacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- lacksquare We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g\in\mathbb{F}_{p^2}$, denote $g=g_0+g_1x$, $[g]_i=g_i$
- Also for $h, h \in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) \to \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = \begin{bmatrix} 1 & \mu \\ 0 & \lambda \end{bmatrix}$$

- Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2 imes 2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{i}}(q)]_1 = \lambda[q]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- lacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- lacksquare We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g\in \mathbb{F}_{p^2}$, denote $g=g_0+g_1x$, $[g]_i=g_i$
- Also for $h, h \in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) \to \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = \begin{bmatrix} 1 & \mu \\ 0 & \lambda \end{bmatrix}$$

- \blacksquare Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2×2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{i}}(q)]_1 = \lambda[q]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- lacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g\in\mathbb{F}_{p^2}$, denote $g=g_0+g_1x$, $[g]_i=g_i$
- Also for $h, h \in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) \to \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = \begin{bmatrix} 1 & \mu \\ 0 & \lambda \end{bmatrix}$$

- \blacksquare Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2×2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{k}}(g)]_1 = \lambda[g]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- lacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g \in \mathbb{F}_{p^2}$, denote $g = g_0 + g_1 x$, $[g]_i = g_i$
- lacktriangle Also for $h,\hat{h}\in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) o \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = egin{bmatrix} 1 & \mu \ 0 & \lambda \end{bmatrix}$$

- \blacksquare Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2×2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{h}}(g)]_1 = \lambda[g]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- lacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g \in \mathbb{F}_{p^2}$, denote $g = g_0 + g_1 x$, $[g]_i = g_i$
- lacktriangle Also for $h,\hat{h}\in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) o \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = egin{bmatrix} 1 & \mu \ 0 & \lambda \end{bmatrix}$$

- \blacksquare Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2×2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{h}}(g)]_1 = \lambda[g]_1$

- For a given prime p, there are many $(\approx p^2/2)$ fields \mathbb{F}_{p^2} , and they are all isomorphic to each other
- $h(x) = x^2 + h_1 x + h_0$ a monic irreducible polynomial of degree 2, $I_2(p)$ the set of all such polynomials
- lacksquare \mathbb{F}_{p^2} is isomorphic to $\mathbb{F}_p[x]/(h)$
- We can write elements in \mathbb{F}_{p^2} as linear polynomials
- lacksquare So for $g \in \mathbb{F}_{p^2}$, denote $g = g_0 + g_1 x$, $[g]_i = g_i$
- lacktriangle Also for $h,\hat{h}\in I_2(p)$ there exists an easily computable isomorphism

$$\phi_{\hat{h}}: \mathbb{F}_p[x]/(h) o \mathbb{F}_p[x]/(\hat{h}) \quad \text{and} \quad \phi_{\hat{h}} = egin{bmatrix} 1 & \mu \ 0 & \lambda \end{bmatrix}$$

- \blacksquare Also given an isomorphism $\phi_{\hat{h}}$ defined by a 2×2 matrix as above, it is easy to find \hat{h}
- Note that $[\phi_{\hat{h}}(g)]_1 = \lambda[g]_1$

Assumption

- \mathcal{F} finite field instance generator, F a finite field generated by \mathcal{F} , g a generator of F
- lacksquare DH problem over ${\mathcal F}$ is hard iff

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \bigg[\mathcal{A}(F,g,g^a,g^b) = \quad g^{ab} \quad \mid F \leftarrow \mathcal{F}(1^\ell) \bigg] \leq \mathsf{negl}(\ell)$$

Theorem

lacksquare If (Partial) DH over $\mathcal F$ is hard, then

$$\forall \, \mathsf{PPT} \, \Omega \qquad \left| \Pr_{a,b,\hat{h}} \Big[\Omega(\hat{h},g,g^a,g^b) = B_k \Big(\Big[\phi_{\hat{h}} \Big(g^{ab} \Big) \Big]_1 \Big) \Big] - \beta_k \right| \leq \mathsf{negl}(\ell)$$

Proof Idea

Apply the framework of Akavia et al

Assumption

- \mathcal{F} finite field instance generator, F a finite field generated by \mathcal{F} , q a generator of F
- lacktriangle DH problem over ${\mathcal F}$ is hard iff

a linear polynomial

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \bigg[\mathcal{A}(F,g,g^a,g^b) = \boxed{ \begin{array}{c} g^{ab} \\ \end{array} | \; F \leftarrow \mathcal{F}(1^\ell) \bigg] \leq \mathsf{negl}(\ell)$$

Theorem

■ If (Partial) DH over \mathcal{F} is hard, then

$$\forall \, \mathsf{PPT} \, \Omega \qquad \left| \Pr_{a,b,\hat{\boldsymbol{h}}} \left[\Omega(\hat{\boldsymbol{h}},g,g^a,g^b) = B_k \left(\left[\phi_{\hat{\boldsymbol{h}}} \Big(g^{ab} \Big) \right]_1 \right) \right] - \beta_k \right| \leq \mathsf{negl}(\ell)$$

Proof Idea

Apply the framework of Akavia et al

New Assumption

- \mathcal{F} finite field instance generator, F a finite field generated by \mathcal{F} , g a generator of F
- lacktriangle (Partial) DH problem over ${\cal F}$ is hard iff the degree-1 coefficient

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(F,g,g^a,g^b) = \boxed{ \left[g^{ab} \right]_1 \mid F \leftarrow \mathcal{F}(1^\ell) } \Big] \leq \mathsf{negl}(\ell)$$

Theorem

 $lue{}$ If (Partial) DH over ${\mathcal F}$ is hard, then

$$\forall \, \mathsf{PPT} \, \Omega \qquad \left| \Pr_{a,b,\hat{\boldsymbol{h}}} \left[\Omega(\hat{\boldsymbol{h}},g,g^a,g^b) = B_k \left(\left[\phi_{\hat{\boldsymbol{h}}} \Big(g^{ab} \Big) \right]_1 \right) \right] - \beta_k \right| \leq \mathsf{negl}(\ell)$$

Proof Idea

Apply the framework of Akavia et al

New Assumption

- \mathcal{F} finite field instance generator, F a finite field generated by \mathcal{F} , g a generator of F
- lacktriangle (Partial) DH problem over ${\cal F}$ is hard iff the degree-1 coefficient

$$\forall \; \mathsf{PPT} \, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(F,g,g^a,g^b) = \boxed{ \left[g^{ab} \right]_1 \mid F \leftarrow \mathcal{F}(1^\ell) } \Big] \leq \mathsf{negl}(\ell)$$

Theorem

■ If (Partial) DH over \mathcal{F} is hard, then

$$\forall \, \mathsf{PPT} \, \Omega \qquad \left| \Pr_{a,b,\hat{\pmb{h}}} \left[\Omega(\hat{\pmb{h}},g,g^a,g^b) = B_k \left(\left[\phi_{\hat{\pmb{h}}} \Big(g^{ab} \Big) \right]_{\mathbf{1}} \right) \right] - \beta_k \right| \leq \mathsf{negl}(\ell)$$

Proof Idea

Apply the framework of Akavia et al.

New Assumption

- \mathcal{F} finite field instance generator, F a finite field generated by \mathcal{F} , g a generator of F
- lacktriangle (Partial) DH problem over $\mathcal F$ is hard iff the degree-1 coefficient

$$\forall \; \mathsf{PPT}\, \mathcal{A} \qquad \Pr_{a,b} \Big[\mathcal{A}(F,g,g^a,g^b) = \boxed{\left[g^{ab}\right]_1 \mid F \leftarrow \mathcal{F}(1^\ell)} \Big] \leq \mathsf{negl}(\ell)$$

Theorem

■ If (Partial) DH over \mathcal{F} is hard, then

$$\forall \, \mathsf{PPT} \, \Omega \qquad \left| \Pr_{a,b,\hat{\pmb{h}}} \left[\Omega(\hat{\pmb{h}},g,g^a,g^b) = B_k \left(\left[\phi_{\hat{\pmb{h}}} \Big(g^{ab} \Big) \right]_{\mathbf{1}} \right) \right] - \beta_k \right| \leq \mathsf{negl}(\ell)$$

Proof Idea

Apply the framework of Akavia et al.

What we are given

- \blacksquare F, g, g^a , g^b
- 2 Ω predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code

$$\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid \ \alpha \ \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

C meets three properties required for the framework of Akavia et al.

What we are given

- \blacksquare F, g, g^a , g^b
- 2 Ω predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

1 Define the multiplication code

$$\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid \ \alpha \ \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 ${f 2}$ C meets three properties required for the framework of Akavia et al.

What we are given

- 2 Ω predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code a linear polynomial

$$\mathcal{C} = \left\{ C_\alpha : \mathbb{F}_p^\times \to \{\pm 1\} \mid \boxed{\alpha \in \mathbb{F}_{p^2}} \right\} \quad \text{where} \quad C_\alpha(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 $oldsymbol{\mathbb{Z}}$ \mathcal{C} meets three properties required for the framework of Akavia et al.

Accessible Ω gives us access to a noisy $C_{\alpha} = \Omega(\lambda, g, g^{a}, g^{b})$. Concentrated Codewords are Fourier concentrated

Recoverable. The recovery algorithm of Akavia et al., also works

What we are given

- \blacksquare F, g, g^a , g^b
- 2 Ω predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code a linear polynomial

$$\mathcal{C} = \left\{ C_\alpha : \mathbb{F}_p^\times \to \{\pm 1\} \mid \boxed{\alpha \in \mathbb{F}_{p^2}} \right\} \quad \text{where} \quad C_\alpha(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 ${f 2}$ C meets three properties required for the framework of Akavia et al.

Accessible
$$\Omega$$
 gives us access to a noisy $\tilde{C}_{\alpha}=\Omega(\lambda,g,g^a,g^b)$

Loncentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works

What we are given

- ${\bf 2}$ Ω predicting $B_k([\phi_{\hat h}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code a linear polynomial

$$\mathcal{C} = \left\{ C_\alpha : \mathbb{F}_p^\times \to \{\pm 1\} \mid \boxed{\alpha \in \mathbb{F}_{p^2}} \right\} \quad \text{where} \quad C_\alpha(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 ${\bf 2}$ ${\bf \mathcal{C}}$ meets three properties required for the framework of Akavia et al.

Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha}=\Omega(\lambda,g,g^a,g^b)$

Concentrated Codewords are Fourier concentrated

Recoverable The recovery algorithm of Akavia et al. also works

self-corrector does not work in this "partial" case)

What we are given

- \blacksquare F, g, g^a , g^b
- ${\bf 2} \ \Omega$ predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code a linear polynomial

$$\mathcal{C} = \left\{ C_{\alpha} : \mathbb{F}_p^{\times} \to \{\pm 1\} \mid \boxed{\alpha} \in \mathbb{F}_{p^2} \right\} \quad \text{where} \quad C_{\alpha}(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 ${f 2}$ C meets three properties required for the framework of Akavia et al.

Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha}=\Omega(\lambda,g,g^a,g^b)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works But, we only get a poly-list of degree-1 coefficients So, we pick one coefficient at random (Shoup's self-corrector does not work in this "partial" case)

What we are given

- \blacksquare F, g, g^a , g^b
- ${\bf 2} \ \Omega$ predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code a linear polynomial

$$\mathcal{C} = \left\{ C_\alpha : \mathbb{F}_p^\times \to \{\pm 1\} \mid \boxed{\alpha \in \mathbb{F}_{p^2}} \right\} \quad \text{where} \quad C_\alpha(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 ${f 2}$ C meets three properties required for the framework of Akavia et al.

Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha}=\Omega(\lambda,g,g^a,g^b)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works But, we only get a poly-list of degree-1 coefficients So, we pick one coefficient at random (Shoup's self-corrector does not work in this "partial" case)

What we are given

- \blacksquare F, g, g^a , g^b
- 2 Ω predicting $B_k([\phi_{\hat{h}}(g^{ab})]_1)=B_k(\lambda[g^{ab}]_1)$ with non-negl adv

How we do it

Define the multiplication code a linear polynomial

$$\mathcal{C} = \left\{ C_\alpha : \mathbb{F}_p^\times \to \{\pm 1\} \mid \boxed{\alpha \in \mathbb{F}_{p^2}} \right\} \quad \text{where} \quad C_\alpha(\lambda) = B_k(\lambda \cdot [\alpha]_1)$$

 ${f 2}$ C meets three properties required for the framework of Akavia et al.

Accessible Ω gives us access to a noisy $\tilde{C}_{\alpha}=\Omega(\lambda,g,g^a,g^b)$ Concentrated Codewords are Fourier concentrated Recoverable The recovery algorithm of Akavia et al. also works But, we only get a poly-list of degree-1 coefficients So, we pick one coefficient at random (Shoup's self-corrector does not work in this "partial" case)

- Our Result 2 also applies to finite field-based partial one-way functions
- f is a FFB-POWF iff
 - $\hspace{.1in} \hspace{.1in} \hspace{.1$
 - f is easy to compute given α
 - It is hard to compute $|\alpha|$, from $f(\alpha)$

- Our Result 2 also applies to finite field-based partial one-way functions
- lacksquare f is a FFB-POWF iff
 - lacksquare f does not depend on a particular isomorphism class of \mathbb{F}_{p^2}
 - 2 f is easy to compute given α
 - It is hard to compute $[\alpha]_1$ from $f(\alpha)$

- Our Result 2 also applies to finite field-based partial one-way functions
- lacksquare f is a FFB-POWF iff
 - 1 f does not depend on a particular isomorphism class of \mathbb{F}_{p^2}
 - **2** f is easy to compute given α
 - It is hard to compute $[\alpha]_1$ from $f(\alpha)$

- Our Result 2 also applies to finite field-based partial one-way functions
- lacksquare f is a FFB-POWF iff
 - 1 f does not depend on a particular isomorphism class of \mathbb{F}_{p^2}
 - **2** f is easy to compute given α
 - f 3 It is hard to compute $[\alpha]_1$ from $f(\alpha)$

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- f B Our second result also applies to FFB-POWFs over $\Bbb F_{p^2}$
- Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- 3 Our second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

Introduction Background Related Work Contribution Conclusion

Summary & Open Problems

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- f 3 Our second result also applies to FFB-POWFs over $\Bbb F_{p^2}$
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

- Extend our results to \mathbb{F}_{p^t} for t>2
- Show that DH problem over $\mathbb{F}_{p^2} o (\mathsf{Partial})$ DH problem over \mathbb{F}_{p^2}
 - Show that DH problem over $\mathbb{F}_p o \{ ext{Partial}\}$ DH problem over \mathbb{F}_{p^2}

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- $lacksquare{3}$ Our second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

- **III** Extend our results to \mathbb{F}_{p^t} for t>2
- lacksquare Show that DH problem over $\mathbb{F}_{p^2} o$ (Partial) DH problem over \mathbb{F}_{p^2}
- Show that DH problem over $\mathbb{F}_n \to (Partial)$ DH problem over \mathbb{F}_{n^2}

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- $lacksquare{3}$ Our second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

- **1** Extend our results to \mathbb{F}_{p^t} for t>2
- 2 Show that DH problem over $\mathbb{F}_{p^2} o (\mathsf{Partial})$ DH problem over \mathbb{F}_{p^2}
- ${ t 3}$ Show that DH problem over ${\mathbb F}_p o$ (Partial) DH problem over ${\mathbb F}_{p^2}$

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- $lacksquare{3}$ Our second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

- **1** Extend our results to \mathbb{F}_{p^t} for t>2
- 2 Show that DH problem over $\mathbb{F}_{p^2} o$ (Partial) DH problem over \mathbb{F}_{p^2}
- ${ t 3}$ Show that DH problem over ${\mathbb F}_p o$ (Partial) DH problem over ${\mathbb F}_{p^2}$

Summary

- We proved the unpredictability of every bit of the secret DH value of the of EC DH problem over a random representation of the curve
- 2 We also extended the above result to (partial) DH problem over finite fields \mathbb{F}_{p^2}
- 3 Our second result also applies to FFB-POWFs over \mathbb{F}_{p^2}
- 4 Our approach "augments" the input to the computationally hard problem with a random description of the underlying group

- **1** Extend our results to \mathbb{F}_{p^t} for t>2
- 2 Show that DH problem over $\mathbb{F}_{p^2} o$ (Partial) DH problem over \mathbb{F}_{p^2}
- 3 Show that DH problem over $\mathbb{F}_p o$ (Partial) DH problem over \mathbb{F}_{p^2}

Thank You!

