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Our Results

Result 1: Bit-security of Diffie-Hellman over Elliptic Curves
If Diffie-Hellman (DH) problem over elliptic curves (EC) is hard, every bit∗

of the secret Diffie-Hellman value is unpredictable.

Result 2: Bit-security of (Partial) DH over Finite Fields
Extension of Result 1 to (partial) DH problem over the finite field Fp2 .

Result 3: Bit-security of Finite Field-based Partial OWF
Every bit∗ of the input to a finite field-based partial one-way function
(FFB-POWF) is unpredictable.
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One-way Functions and Hard-core Predicates

One-way Function
f : X → Y is a one-way function (OWF) iff

1 It is easy to compute f(x) given x ∈ X
2 It is hard to invert, i.e.,

∀ PPTA Pr
x

.←←$ X

[f(z) = y | y = f(x), z = A(y)] ≤ negl.

Hard-core Predicate for OWF f
P : X → {0, 1} is a hard-core predicate for f iff

∀ PPTA Pr
x

.←←$ X
[A(f(x)) = P (x)] ≤ 1

2
+ negl.
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Why We Need Hard-core Predicates

f(x) could reveal a lot of partial information about x but not about
its hard-core predicates
Can use hard-core predicates for any application where
pseudo-randomness is needed

Key exchange, encryption, pseudo-random generators, etc.
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Known Hard-core Predicates for One-way Functions

Specific Hard-core Predicates
MSB of DL over Fp is hard-core - Blum and Micali (1984)
LSB of RSA is hard-core - Alexi et al. (1988)
Each bit of DL modulo Blum integer is hard-core
- Håstad et al. (1993)
Every bit of RSA is hard-core - Håstad and Näslund (1998)

General Hard-core Predicates
Every OWF f can be modified to obtain a OWF g having a specific
hard-core bit - Goldreich and Levin (1989)
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Diffie-Hellman Problem and its Hard-core Predicates

DH Problem
G = 〈g〉 — a group with generator g and order q. DH is hard in G iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = gab

]
≤ negl.

Hard-core Predicate for DH
P : G→ {0, 1} is a hard-core predicate for DH problem iff

∀ PPTA Pr
a,b

.←←$ Zq

[
A(G, q, g, ga, gb) = P (gab)

]
≤ 1

2
+ negl.

◦ No deterministic hard-core predicate for DH is known
But the generic (randomized) Goldreich-Levin result works

◦ In a modified model LSB of EC-based DH secret value is unpredictable
- Boneh and Shparlinski (2001)
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The Result of Boneh and Shparlinski (2001)

Highlights
EC-based DH is hard → LSB of DH secret is hard-core
Given Ω predicting LSB of DH secret over a random representation of
the curve, recover the entire DH secret
Breakthrough: Use the representation of the curve to randomize the
queries to Ω

Ω

W,PW , aPW , bPW

abPW

W ′, PW ′ , aPW ′ , bPW ′

LSB([abPW ′ ]x)
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The Result of Duc and Jetchev (2012)

Highlights
Applies to EC-based OWF (ECB-OWF)
(i.e., f does not depend on the representation of the curve)
f is an ECB-OWF → every bit of its input is hard-core
Given Ω predicting any bit of the input to f , invert f
Main Idea: Apply the Boneh-Shparlinski randomization technique
together with the Akavia et al. list-decoding approach.

Ω

W, f(Q)W

QW

W ′, f(Q)W ′

Bk([QW ′ ]x)
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The Result of Akavia et al. (2003)

Highlights
Let f : Zn → Y be a OWF, and π : Zn → {±1} a predicate
A framework for proving that π is hard-core for f

Approach
1 Define a multiplication code

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

2 Use the oracle that predicts π(x) from f(x) to construct a noisy
version of Cx

3 Use list-decoding techniques to find a small set of candidates for x
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More details on Akavia et al.

C = {Cx : Zn → {±1} | x ∈ Zn} where Cx(λ) = π(λ · x)

It should be shown that C meets the following properties

Accessible Given y = f(x), it is possible to get a “noisy” C̃x of Cx
They assume f is homomorphic
i.e., given λ and f(x) it is possible to compute f(λx)
Noisy access to Cx(λ) is obtained by querying the oracle on f(λx)

Concentrated Every codeword Cx is a Fourier concentrated function
They prove it for LSB, MSB and segment predicates
Morillo and Ràfols (2008) generalize to any bit

Recoverable Given a frequency (character) χ, ∃ a poly time algorithm that
finds all values x such that χ is “heavy” for Cx

Easy consequence of being a multiplication code

Fourier-Learnable It is possible to efficiently learn all the heavy coefficients
of Cx given query access to its noisy version.
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Elliptic Curves, Short Weierstrass Equations, Isomorphisms

Short Weierstrass Equations
E — an elliptic curve
Wa,b — a short Weierstrass equation representing E

Wa,b : y2 = x3 + ax+ b for a, b ∈ Fp, 4a3 + 27b2 6= 0

Isomorphism Classes
Wa,b is isomorphic to W ′a′,b′ iff a

′ = λ′−4a, b′ = λ′−6b for λ′ ∈ F×p
W(E) — the isomorphism class of E

W(E) =
{
y2 = x3 + λ4ax+ λ6b | λ ∈ F×p

}
Φλ : E → E — the easily computable isomorphism

Φλ((x, y)) = (λ2x, λ3y)
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Our Result 1: Bit-security of Diffie-Hellman over Elliptic Curves

Assumption
E — elliptic curve instance generator, E — an elliptic curve generated
by E , G = 〈P 〉 — a cyclic subgroup of E
DH problem over E is hard iff

∀ PPTA Pr
a,b

[
A(E,P, aP, bP ) = abP | E ← E(1`)

]
≤ negl(`)
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If DH over E is hard, then

∀ PPTΩ
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a,b,λ
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Our Result 1: Proof Sketch

What we are given
1 E, P , aP , bP
2 Ω predicting Bk([Φλ(abP )]x) = Bk(λ

2[abP ]x) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
CQ : F×p → {±1} | Q ∈ Fp

}
where CQ(λ) = Bk(λ ·Qx)

2 But Φλ(·) squares λ. So define

Ω′(λ, P, aP, bP ) =

{
Ω(
√
λ, P, aP, bP ) if λ is a square

βk-biased coin otherwise

3 C meets three properties required for the framework of Akavia et al.
Accessible Ω′ gives us access to a noisy C̃Q = Ω′(λ, P, aP, bP )

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

4 This process gives us a poly-size list of candidates: just output one at
random or use Shoup’s self-corrector (which outputs the correct one
with high probability)
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Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi

Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism

φĥ : Fp[x]/(h)→ Fp[x]/(ĥ) and φĥ =

[
1 µ
0 λ

]
Also given an isomorphism φĥ defined by a 2× 2 matrix as above, it is
easy to find ĥ
Note that [φĥ(g)]1 = λ[g]1
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Also for h, ĥ ∈ I2(p) there exists an easily computable isomorphism
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Note that [φĥ(g)]1 = λ[g]1



Introduction Background Related Work Contribution Conclusion

Other Candidate Settings?

The Finite Field Fp2
For a given prime p, there are many (≈ p2/2) fields Fp2 ,
and they are all isomorphic to each other
h(x) = x2 + h1x+ h0 — a monic irreducible polynomial of degree 2,
I2(p) — the set of all such polynomials
Fp2 is isomorphic to Fp[x]/(h)

We can write elements in Fp2 as linear polynomials
So for g ∈ Fp2 , denote g = g0 + g1x, [g]i = gi
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Our Result 2: Bit-security of (Partial) DH over Fp2

Assumption
F — finite field instance generator, F — a finite field generated by
F , g — a generator of F
DH problem over F is hard iff

∀ PPTA Pr
a,b

[
A(F, g, ga, gb) =

[
gab
]
1gab | F ← F(1`)

]
≤ negl(`)

Theorem
If (Partial) DH over F is hard, then

∀ PPTΩ

∣∣∣∣∣ Pr
a,b,ĥ

[
Ω(ĥ, g, ga, gb) = Bk

([
φĥ

(
gab
)]

1

)]
− βk

∣∣∣∣∣ ≤ negl(`)

Proof Idea
Apply the framework of Akavia et al.
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Ω(ĥ, g, ga, gb) = Bk

([
φĥ
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Our Result 2: Proof Sketch

What we are given
1 F , g, ga, gb

2 Ω predicting Bk([φĥ(gab)]1) = Bk(λ[gab]1) with non-negl adv
How we do it

1 Define the multiplication code

C =
{
Cα : F×p → {±1} | αα ∈ Fp2

}
where Cα(λ) = Bk(λ · [α]1)

2 C meets three properties required for the framework of Akavia et al.
Accessible Ω gives us access to a noisy C̃α = Ω(λ, g, ga, gb)

Concentrated Codewords are Fourier concentrated
Recoverable The recovery algorithm of Akavia et al. also works

But, we only get a poly-list of degree-1 coefficients
So, we pick one coefficient at random (Shoup’s
self-corrector does not work in this “partial” case)
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Our Result 3: Bit-security of FFB-POWFs

Our Result 2 also applies to finite field-based partial one-way functions
f is a FFB-POWF iff

1 f does not depend on a particular isomorphism class of Fp2

2 f is easy to compute given α
3 It is hard to compute [α]1 from f(α)
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Summary & Open Problems

Summary
1 We proved the unpredictability of every bit of the secret DH value of

the of EC DH problem over a random representation of the curve
2 We also extended the above result to (partial) DH problem over finite

fields Fp2
3 Our second result also applies to FFB-POWFs over Fp2
4 Our approach “augments” the input to the computationally hard

problem with a random description of the underlying group
Open Problems

1 Extend our results to Fpt for t > 2

2 Show that DH problem over Fp2 → (Partial) DH problem over Fp2
3 Show that DH problem over Fp → (Partial) DH problem over Fp2
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