Broadcast Steganography
or
How to Broadcast a Secret *Covertly*

SESSION ID: CRYP-T08

Nelly Fazio
The City College of CUNY
fazio@cs.ccny.cuny.edu

Antonio R. Nicolosi
Stevens Institute of Technology
nicolosi@cs.stevens.edu

Irippuge Milinda Perera
The Graduate Center of CUNY
iperera@gc.cuny.edu
Without Crypto
Without Crypto
Without Crypto
Without Crypto

Take that down!
With Encryption
With Encryption
With Encryption
With Encryption
With Encryption

Take that down!
With Steganography
With Steganography
With Steganography
With Steganography

Oh cute!
With Steganography

Oh cute!

Take that down!
With Broadcast Steganography [This Work]
With Broadcast Steganography [This Work]

Oh cute!
With Broadcast Steganography [This Work]
With Public-Key Broadcast Steganography [This Work]

Oh cute!
- Broadcast Steganography (BS)
- Constructions
- Summary
Broadcast Steganography (BS)
Constructions
Summary
The Setting

Setup
The Setting

1^\lambda, N \rightarrow \text{Setup} \rightarrow \text{MSK, MPK}
The Setting

\[1^\lambda, N \rightarrow \text{Setup} \rightarrow \text{KeyGen} \]

\[\rightarrow \text{MSK} \]

\[\rightarrow \text{MPK} \]
The Setting

\[1^\lambda, N \rightarrow \text{Setup} \rightarrow \text{KeyGen} \rightarrow \text{MSK}, \text{MPK}, \text{SK} \]
The Setting

Encode
The Setting

MPK

Message

History

Encode

Stegotext
The Setting

MPK

Message

History

Encode

Stegotext

Decode
The Setting

MPK

Message

History

Encode

Stegotext

MPK

SK

Stegotext

Decode

Message or X
The Security Model

1. Chosen-Covertext Attack (BS-IND-CCA)
 - Analogous to BE-IND-CCA model
 - Adversary is allowed to corrupt users
 - Adversary is also given access to a decoding oracle

2. Publicly-Detectable Replayable Chosen Covertext Attack (BS-IND-PDR-CCA)
 - Similar to BS-IND-CCA, but with **stricter** restrictions on allowable decoding queries

3. Chosen-Hiddentext Attack (BS-IND-CHA)
 - Analogous to BE-IND-CPA model
 - Adversary is only allowed to corrupt users
 - No decoding queries
Broadcast Steganography (BS)

Constructions

Summary
Realizing Broadcast Steganography

- Encrypt-then-Embed Paradigm [HLvA02, BaCa05]
Realizing Broadcast Steganography

- Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

- Embed (rejection-sampling)
 1. Let H be a strongly universal hash function
 2. Break the ciphertext c into bits $c_1, c_2, ..., c_l$
 3. To embed c_i, sample s_i from the channel until $H(s_i) = c_i$
 4. Output $s = s_1 || s_2 || ... || s_l$
Realizing Broadcast Steganography

- Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

Extract

1. Break the stegotext s into documents s_1, s_2, \ldots, s_l
2. Set $c_i = H(s_i)$
3. Output $c = c_1 || c_2 || \ldots || c_l$
Broadcast Encryption + Encrypt-then-Embed = Broadcast Steganography?

- Encrypt-then-Embed requires *pseudorandom* ciphertexts ...
- ... but, Broadcast ciphertexts have *structure*

Neither header nor body is pseudorandom
Outsider-Anonymous Broadcast Encryption [FaPe12]

- Motivation: Anonymous Broadcast Encryption with short ciphertexts
 - A fully anonymous ciphertext length is subject to a linear lower bound [KiSa12]
 - In some applications, content may give recipient set away
 ⇒ Suffices to protect anonymity of receivers from outsiders

- Outsider-Anonymity in Broadcast Encryption
 - Trades some degree of anonymity for better efficiency
 - Allows constructions with sub-linear ciphertext length
oABE Encryption in [FaPe12]

- Encrypt(S, m)
 1. Group users in S into S', a set of disjoint subsets
 - $|S'|$ is sub-linear in $|S|$
 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 4. Bundle all (t_i, c_i) components using one-time signature
oABE Encryption in [FaPe12]

- Encrypt(S, m)
 1. Group users in S into S', a set of disjoint subsets
 - $|S'|$ is sub-linear in $|S|$
 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 4. Bundle all (t_i, c_i) components using one-time signature
oABE Encryption in [FaPe12]

- Encrypt(S, m)
 1. Group users in S into S', a set of disjoint subsets
 - $|S'|$ is sub-linear in $|S|$
 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 4. Bundle all (t_i, c_i) components using one-time signature

\[
\begin{array}{c}
c_1 \\
\ldots \\
c_i
\end{array}
\]
oABE Encryption in [FaPe12]

- Encrypt(S, m)
 1. Group users in S into S', a set of disjoint subsets
 - $|S'|$ is sub-linear in $|S|$
 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 4. Bundle all (t_i, c_i) components using one-time signature

```
   t_0  t_1  c_1  ...  t_i  c_i
```
oABE Encryption in [FaPe12]

- Encrypt(S, m)
 1. Group users in S into S', a set of disjoint subsets
 - $|S'|$ is sub-linear in $|S|$
 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 4. Bundle all (t_i, c_i) components using one-time signature
oABE Encryption in [FaPe12]

- **Encrypt(S, m)**
 1. Group users in S into S', a set of disjoint subsets
 - $|S'|$ is sub-linear in $|S|$
 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 4. Bundle all (t_i, c_i) components using one-time signature

- Notice that ciphertexts have **no header** ...
- ... but **still exhibit structure** due to tags and signature
- **Idea:** Toward a BS construction, make these components **pseudorandom**
How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBE$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)
How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBE$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)
oABE with Pseudorandom Ciphertexts (oABE$) [This Work]

- How to make oABE ciphertexts pseudorandom?
 1. Replace the underlying AIBE with AIBE$ [AgBo09]
 2. Apply an entropy smoothing hash to group elements
 3. Replace one-time signature with a MAC (implemented via PRF)
How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBE$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)
oABE with Pseudorandom Ciphertexts (oABE$) [This Work]

How to make oABE ciphertexts pseudorandom?
1. Replace the underlying AIBE with AIBE$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)

Question: How to embed the MAC key in c_i’s and still obtain CCA security?
Solution: Construct an encapsulation mechanism [DoKa05, BoKa05] with pseudorandom commitments
Comparison of BE Schemes with Anonymity Properties

| Scheme | |PK| | |sk| | |c| |Security Model| Anonymity |
|------------|---|---|---|---|---|---|---|---|---|---|
| BBW06 | O(N) | O(1) | O(N-r) | Static, RO | Full |
| LPQ12 | O(N) | O(1) | O(N-r) | Adaptive, Standard | Full |
| FaPe12a | O(N) | O(log N) | O(r log (N/r)) | Adaptive, Standard | Outsider |
| FaPe12b | O(N log N) | O(N) | O(r) | Adaptive, Standard | Outsider |
| This Work | O(N) | O(log N) | O(r log (N/r)) | Adaptive, Standard | Outsider |

N: total number of users, r: number of revoked users

- Only oABE$ provides pseudorandom ciphertexts
Our Construction of Broadcast Steganography

- Highlights
 - oABE + Encrypt-then-Embed = Broadcast Steganography
 - Our constructions have sub-linear stegotext length
 - For CCA security, requires stateless channel

- Constructions:
 1. BS-CHA
 2. BS-PDR-CCA
 3. BS-CCA
Broadcast Steganography (BS)
Constructions
Summary
BE and Friends
Summary

- Initiated the study of Broadcast Steganography
 - A multi-recipient communication tool to plant undetectable messages in innocent-looking conversations
- Put forth sublinear constructions of broadcast steganography under a range of security notions
- In the process, devised efficient broadcast encryption schemes with pseudorandom ciphertexts and anonymity properties
 - Implementing CCA checks without imposing structure on broadcast ciphertexts required overcoming multiple technical hurdles