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Abstract

We initiate the study of broadcast steganography (BS), an extension of steganography to
the multi-recipient setting. BS enables a sender to communicate covertly with a dynamically
designated set of receivers, so that the recipients recover the original content, while unauthorized
users and outsiders remain unaware of the covert communication. One of our main technical
contributions is the introduction of a new variant of anonymous broadcast encryption that we
term outsider-anonymous broadcast encryption with pseudorandom ciphertexts (oABE$). Our
oABE$ construction achieves sublinear ciphertext size and is secure in the standard model.
Besides being of interest in its own right, oABE$ enables an efficient construction of BS secure
in the standard model against adaptive adversaries with sublinear communication complexity.

Keywords: Steganography, Broadcast Encryption, Receiver Anonymity.

1 Introduction
Point-to-point encryption schemes are effective at concealing the meaning of the communication
between two parties. If the parties additionally desire that the very existence of their communication
over a public channel remains concealed, then the required tool is steganography. Conventional
steganography allows two parties to communicate covertly, even in the presence of an adversary, by
hiding the intended content within other, seemingly harmless messages. After its initial formalization
in the information-theoretic [11] and complexity-theoretic [29,31,44] settings, steganography has
received regular attention by the cryptographic community. To a first approximation, existing
solutions differ mostly in the degree of adversarial control that they can tolerate, and in the
specific trade-off that they achieve among the main efficiency measures of transmission overhead,
public/secret key storage, and encryption/decryption complexity.
∗© 2014. This article is the full version of the version published by Springer-Verlag available at 10.1007/
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Figure 1: Relations between broadcast encryption (BE), (outsider) anonymous broadcast encryption (AnoBE
and oABE), and broadcast steganography (BS). A straight arrow means that one notion implies the other,
while the curly arrow denotes our black-box construction from oABE$ to BS (cf. Sect. 5). (To avoid cluttering
the figure, relations implied by transitivity are omitted.)

Steganography. Simmons [42] introduced the cryptographic community to the problem of hidden
communication with his famous prisoners’ dilemma: Alice and Bob are in jail and can only talk
in the presence of the jail warden Ward. Ward will not allow any encrypted communication, so
Alice and Bob must hide their messages about an escape plan (the hiddentext) into innocent-
looking communication (the stegotext) that Ward cannot distinguish from casual chatter (the
covertext). Modern cryptographic treatment of steganography began with Cachin’s formalization
in the information-security setting [11] and Hopper et al.’s in the complexity-theoretic one [29].
Kiayias et al. [32] improve the efficiency of the steganographic protocol of [29] by replacing the
use of a pseudorandom function family with the combination of a pseudorandom generator and a
t-wise independent hash function. This approach was further refined in [33] to obtain a key-efficient
steganographic system, where the gain stems from employing a novel rejection sampling method
based on extractors.

In 2004, von Ahn and Hopper [44] extended the notion of steganography to the public-key
setting, but mostly focused on security against passive adversaries. A stronger security model
(steganographic secrecy against adaptive chosen-covertext attacks, or SS-CCA) was defined by
Backes and Cachin [4], but their constructions attained only an intermediate security notion, termed
steganographic secrecy against publicly-detectable, replayable adaptive chosen-covertext attacks
(SS-PDR-CCA). Building upon the work of [4], Hopper [28] attained full SS-CCA security under
the Decisional Diffie-Hellman (DDH) assumption, in the standard model. Le and Kurosawa [35]
suggested a weaker generalization of the model of [4], but with better efficiency than [28].

All steganographic constructions mentioned above assume that the communication channel
can be modeled by an efficient covertext sampler that can be queried adaptively, in a black-box
manner. Dedic et al. [14, 41] looked into communication bounds for stegosystems of this kind, while
Lysyanskaya and Meyerovich [37] dealt with the case of imperfect channel oracle samplers.

Work of von Ahn et al. [45] and Chandran et al. [13] introduced stealthiness to the setting
of secure function evaluation, originating the notion of covert two-party/multi-party computation.
Covert protocols allow parties to carry out distributed computations in a way that hides their
very intent of taking part in the protocol: that is, unless all parties actively participate, nobody
can detect that protocol messaging had been initiated (and aborted). This capability supports
stealthy coordination between mutually mistrustful parties and enables fascinating applications like
covert authentication [45] and co-spy detection [13]. However, it does not imply efficient covert
dissemination of information to a chosen subset of (mostly passive) receivers, which is the main
focus of this paper.

Broadcast Steganography (BS). In this work, we extend steganography to the broadcast setting.
Intuitively, broadcast steganography enables a sender to communicate covertly with a dynamically
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Table 1: Comparison of the parameters of (outsider) anonymous broadcast encryption schemes. Each
scheme is CCA-secure and requires only one decryption attempt. Only our scheme provides pseudorandom
ciphertexts (c ≈ $:Yes). N is the total number of users and r is the number of revoked users.

Scheme Length of MPK Length of sk Length of c Security Model Anonymity c ≈ $
BBW06 [5] O(N) O(1) O(N − r) Static, RO Full No
LPQ12 [36] O(N) O(1) O(N − r) Adaptive, Standard Full No

FP12a [20] O(N) O(logN) O
(
r log

(
N
r

))
Adaptive, Standard Outsider No

FP12b [21] O(N logN) O(N) O(r) Adaptive, Standard Outsider No

oABE$ [ours] O(N) O(logN) O
(
r log

(
N
r

))
Adaptive, Standard Outsider Yes

designated set of receivers, so that authorized recipients correctly recover the original content,
while unauthorized users and outsiders remain unaware of the covert communication. To construct
broadcast steganography, we employ the “encrypt-then-embed” paradigm that underpins most
steganographic constructions [4, 28,29,44] (cf. Sect. 2). Realizing this approach, however, requires
solving several technical problems.

The first issue is that, in broadcast encryption, the receiver set is included explicitly in the
ciphertext as part of its header (e.g., [6, 7, 9, 15–18, 22, 23, 25, 26, 39]). This is a non-starter for
steganography, which intrinsically requires that the existence of any data in the channel be concealed.
To address this issue, we turn to private broadcast encryption, a notion introduced by Barth et
al. [5] with the goal of keeping the identities of the authorized receivers anonymous (Sect. 2).

The second hurdle is that the “encrypt-then-embed” paradigm requires the underlying encryption
functionality to have pseudorandom ciphertexts. This property so far had not been considered
in the broadcast encryption literature, and none of the existing constructions support it natively.
Interestingly, attaining pseudorandom ciphertexts requires implicitly that the identities of the
recipients be unintelligible in the view of outsiders (pseudorandomness of the ciphertext clearly
cannot hold in the view of the recipients). This condition ties back directly to the previous issue,
but in a weaker form, as recipient anonymity is only required to hold against outsiders. As it turns
out, Fazio and Perera [20] recently proposed a relaxation of full anonymity of exactly this sort:
outsider-anonymous broadcast encryption (oABE). This notion trades some degree of anonymity
for better efficiency: whereas all known fully-anonymous broadcast encryption schemes [5, 36] have
ciphertexts linear in the number of receivers, the constructions of [20] obtain sublinear ciphertext
length, though they do not necessarily guarantee that authorized users will learn no information
about other members of the receiver set.

In light of the above observations, we put forth and realize (Sect. 4) a new broadcast encryption
variant that we term outsider-anonymous broadcast encryption with pseudorandom ciphertexts
(oABE$). oABE$ enables a black-box construction of BS (cf. Sect. 5). Realizing an efficient
oABE$ scheme requires non-trivial enhancements to the oABE construction of [20], for it entails
resolving the apparent tension between our ciphertext pseudorandom property and the ciphertext
redundancy introduced by common approaches to CCA security [8,19]. Our solution harmonizes
these requirements using a novel Pedersen-like encapsulation mechanism discussed in Sect. 4.2. A
comparison of our oABE$ construction with existing ones is reported in Table 1, whereas Fig. 1
shows how oABE$ relates to other anonymous broadcast communication tools.

Applications. The combination of stealth and revocation capabilities offered by broadcast steganog-
raphy enables defenses against insider threats in anti-censorship systems, intelligence scenarios, and
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Table 2: The parameters of our black-box broadcast steganography schemes. Type-1 channels are the most
general, and are modeled as stateful probabilistic oracles whose output distribution may depend on past
samples. Type-2 channels are slightly more restrictive as they assume history independence, and can then be
modeled as efficiently sampleable document distributions, i.e., efficiently computable randomized functions.
N is the total number of users and r is the number of revoked users. The notion of BS-CHA (resp. BS-CCA)
captures passive (resp. active) security for the BS setting (cf. Sect. 3.2).

Scheme Length of MPK Length of sk Length of s Security Model Channel Type

BS-CHA O(N) O(logN) O
(
r log

(
N
r

))
Adaptive, Standard 1

BS-CCA O(N) O(logN) O
(
r log

(
N
r

))
Adaptive, Standard 2

other domains that rely on covert communication [38,43].
For a military example, consider a camp where each soldier has an army smartphone, on which

they receive weather forecast, unclassified news and other information in the clear. Suppose that
headquarters suspect that a group of officials are conspiring to commit treachery, and decides
to carry out an undercover investigation to confirm the identities of the traitors. Conventional
broadcast encryption does not suffice to protect the transmission channel to the soldiers involved
in the investigation of the traitors, because the selective exclusion of the conspirators from the
communication would already put them on notice. Broadcast steganography, instead, would allow
delivery of instructions to the investigating parties without risking alerting the traitors to the
investigation.

For a civil rights scenario, an activist/blogger may want to hide her commentary into innocent-
looking image postings to social media services (e.g., Instagram or Weibo). Because censorship
authorities may infiltrate among the activist’s followers, the ability of broadcast steganography to
authorize/deauthorize recipients at a fine grain would enable the blogger to revoke the infiltrator
and prevent him from recovering the hiddentext, without him noticing that he has been singled out.

Our Contributions. This work initiates the study of broadcast steganography. After introducing
a suitable security framework, we highlight the connections with the issue of recipient-anonymity in
broadcast encryption. One of our main technical contributions is the introduction of a new variant
of anonymous broadcast encryption that we term outsider-anonymous broadcast encryption with
pseudorandom ciphertexts. Our oABE$ construction achieves sublinear ciphertext size and is secure
in the standard model against adaptive adversaries, which required circumventing multiple technical
hurdles and is thus of independent interest. Finally, we devise efficient oABE$-based BS schemes at
varying security levels (cf. Table 2), including a construction with sublinear stegotexts secure in the
standard model against adaptive adversaries.

2 Background
Documents & Covertexts. Let Σ = {0, 1}σ be a finite set of bit-strings with length σ. Denote
by Σ∗ the set of sequences of finite length over Σ. We call the strings u ∈ Σ documents and the
strings s ∈ Σ∗ covertexts.

Channels. A channel Ch is a function that takes as input a channel history h ∈ Σ∗ and produces
a probability distribution on Σ. A channel history h = s1‖ . . . ‖sl ∈ Σ∗ is called legal if for all
i ∈ [1, l], PrCs1‖...‖si−1

[si] > 0. A sampling of l documents in succession from a channel is denoted
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Figure 2: The “encrypt-then-embed” paradigm underlying (broadcast) steganography.

by s = s1‖ . . . ‖sl ← Clh (shorthand notation for s1 ← Ch, s2 ← Ch‖s1 , . . . , sl ← Ch‖s1‖...‖sl−1). A
channel is called always informative if for every legal history h ∈ Σ∗, H∞(Clh) = W(l), where H∞
is the min-entropy function. A channel can be modeled either as an oracle or as an efficiently
computable randomized function Channel(h; r) (where r denotes the random coins). While the latter
is a stronger assumption on the channel, [28] shows it to be necessary for secure steganography.
Efficiently computable channels also enable broadcast steganographic constructions with stronger
security guarantees (cf. Sect. 5).

Public-Key Steganography. From an operational standpoint, public-key steganography resembles
the setting of asymmetric encryption: a participant with a public/secret key pair is able to receive
covert messages (the hiddentexts) from another party, who only knows the public key. Unlike the
case of public-key cryptography, however, the encoded hiddentexts, termed stegotexts, are required
to be indistinguishable from the covertexts of the communication channel.

A common approach to realize public-key stegosystems is the “encrypt-then-embed” paradigm
[4,28,29,44], depicted in Fig. 2. At a high level, encoding is accomplished by first encrypting the
hiddentext using a public-key cryptosystem, and then implanting the resulting ciphertext in the
stegotext using an embedding function. The decoding process develops similarly, but in the reverse
direction. Based on the security properties of the underlying cryptosystem and embedding function,
one obtains stegosystems with a variety of security guarantees (cf. Sect. 1).

Outsider-Anonymous Broadcast Encryption (oABE). The notion of private broadcast en-
cryption was initially introduced in [5], with the aim of providing explicit protection for identities of
the receivers during each transmission. As a proof-of-concept, therein the authors suggested both
generic and number-theoretic public-key constructions that do not leak any information about the
list of authorized receivers, and are secure in the standard model and in the random oracle model,
respectively. The proposed schemes, however, have communication complexity linear in the number
of recipients. In [36], Libert et al. suggested proof techniques to argue the security of (a variant
of) the number-theoretic construction of [5] without reliance on random oracles, thus attaining
anonymous broadcast encryption with efficient decryption in the standard model. Still, ciphertexts
in the resulting construction have length linear in the number of recipients. In [34], Kiayias and
Samari put forth lower bounds on the ciphertext size of private broadcast encryption schemes and
showed, among other results, that fully anonymous broadcast encryption schemes with a certain
“atomicity” property (satisfied, e.g., by the schemes of [5, 36]) must have W(s · λ) ciphertext size,
where s is the number of authorized receivers and λ is the security parameter.

Fazio and Perera [20] formalized the notion of outsider-anonymous broadcast encryption, which
lies between the complete lack of protection that characterizes traditional broadcast encryption
schemes as introduced in [22], and the full anonymity provided by [5,36]. In an oABE scheme, an
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attacker who intercepts a ciphertext of which she is not a legal recipient will be unable to learn
anything about the identities of the legal recipients (let alone the contents of the ciphertext). Still,
for those ciphertexts for which the adversary is in the authorized set of recipients, she might also
garner information about the identities of the other receivers. This seems a natural relaxation,
since often the contents of the communication already reveals something about the recipient set.
Moreover, it enables schemes that achieve sublinear ciphertexts size and are secure against adaptive
adversaries in the standard model. We observe that, in light of the lower bounds of [34], the trade-off
proposed in [20] may be unavoidable.
Entropy Smoothing Hash. A family of hash functions Hes = {H : X → Y } is “entropy
smoothing” [30] if it is hard to distinguish (H,H(x)) from (H, y), where H is a random element of
Hes, x is a random element of X, and y is a random element of Y . More formally, Hes is called
(t, ε)-entropy smoothing if for every t-time adversary A,∣∣∣Pr

[
A(H,H(x)) = 1 | H ←$ Hes, x ←$ X

]
− Pr

[
A(H, y) = 1 | H ←$ Hes, y ←$ Y

]∣∣∣ ≤ ε,
where the probability is over the choice of H,x, y and over the random coins used by A.1

3 Broadcast Steganography (BS)

3.1 The Setting

Definition 3.1: A broadcast steganography scheme, associated with a universe of users U = [1, N ],
a message space MSP, and a channel Ch on a set of documents Σ, is a tuple of probabilistic
polynomial-time (PPT) algorithms (Setup,KeyGen,Encode,Decode) such that:

(MPK,MSK)← Setup(1λ, N): Setup takes the security parameter 1λ and the number of users
in the system N as inputs and outputs the master public key MPK and the master secret key
MSK.

ski ← KeyGen(MPK,MSK, i): Given the master public key MPK, the master secret key MSK,
and a user i ∈ U , KeyGen generates a secret key ski for user i.

s← Encode(MPK, S, h,m): Encode takes the master public key MPK, a set of receivers S ⊆ U ,
a channel history h ∈ Σ∗, and a message m ∈MSP as inputs and outputs a stegotext s ∈ Σ∗
from the support of Clh for some l = poly(|m|).

m/⊥ := Decode(MPK, ski, s): Given the master public key MPK, a secret key ski, and a stegotext
s ∈ Σ∗, Decode either outputs a message m ∈MSP or the failure symbol ⊥. We assume that
Decode is deterministic.

Correctness. For every S ⊆ U , i ∈ S, legal channel history h ∈ Σ∗, and m ∈ MSP,
if (MPK,MSK) is output by Setup(1λ, N) and ski is generated by KeyGen(MPK,MSK, i), then
Decode(MPK, ski,Encode(MPK, S, h,m)) = m except with negligible probability in the security
parameter λ. ♦

1Entropy smoothing is related to strong randomness extraction [46], but it is a much less stringent (and hence
easier to realize) notion, as it seeks only computational (rather than information-theoretic) guarantees, and it is
specific to one entropy source (the uniform distribution over the domain X), whereas strong extractors are applicable
to any source of a given min-entropy.
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Remark 3.1. In contrast to the definition from [28], our definition requires that the Decode algorithm
works without receiving the channel history h corresponding to the stegotext s as an input. This is
crucial for an efficient broadcast steganography scheme, because requiring that authorized users feed
the Decode algorithm with the same h that was used by the sender entails a level of coordination
that is unrealistic in a broadcast setting. Our definition also applies to channels whose samples do
not depend on h at all, as Encode may simply ignore h.

3.2 The Security Models

In broadcast encryption (BE), the adversary’s goal is to learn something about the message encrypted
within a given ciphertext despite not having a valid decryption key. In broadcast steganography, the
adversary’s goal is to detect the presence of a message in a given covertext without a valid decoding
key. In either case, one may consider multiple levels of security, according to the amount of power
afforded to the attacker. We discuss below three models of security for broadcast steganography
schemes, followed by formal definitions later in this section.

Chosen-Hiddentext Attack (BS-CHA). This is the weakest model of security for a broadcast
steganography scheme. Analogous to the chosen-plaintext attack in broadcast encryption, the
adversary in this context is only allowed to corrupt users by gaining their secret keys.

Publicly-Detectable Replayable Chosen-Covertext Attack (BS-PDR-CCA). In this model
of security, the adversary is additionally given access to a decoding oracle through which they can
obtain the hiddentext (if any) in any covertext s of their choice, as recovered by any honest user i
of their choice, subject to the following restriction: After receiving the challenge covertext s∗ for the
set of recipients S∗, the adversary is not allowed to query the decoding oracle with a user index i
and a covertext s such that i ∈ S∗ and s ≡MPK s

∗, where ≡MPK is an arbitrary compatible relation:

Definition 3.2: Let Π = (Setup,KeyGen,Encode,Decode) be a BS scheme. A binary relation on
stegotexts of Π induced by a master public key MPK of Π is called a compatible relation (denoted by
≡MPK) if for any two stegotexts s1, s2 encoded under sets of receivers S1, S2 respectively, we have

1. If s1 ≡MPK s2 then for any i1 ∈ S1 and i2 ∈ S2, Decode(MPK, ski1 , s1) = Decode(MPK, ski2 , s2)
except with negligible probability in the security parameter λ.

2. There exists a PPT algorithm that takes MPK, s1, s2 and determines whether s1 ≡MPK s2. ♦

Chosen-Covertext Attack (BS-CCA). A BS-CCA adversary has the same capabilities from
the BS-PDR-CCA model of security, but the restriction for the decoding queries is now lifted.
Specifically, the only covertext that the adversary is not allowed to submit to the decoding oracle
with a user index i ∈ S∗ is the challenge covertext s∗ itself.

We now formally define the BS-CCA security model via the following security game.

Definition 3.3: For a given BS scheme Π = (Setup,KeyGen,Encode,Decode), the BS-IND-CCA
game, played between a PPT adversary A and a challenger C, is defined as follows:

Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master public key MPK,
keeping the master secret key MSK to itself. C also initializes the set of revoked users R to be
empty.
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Phase 1: A adaptively issues queries q1, . . . , qm of one of the following types:

• Secret-key query i: A requests the secret key of a user i ∈ U . C runs ski ← KeyGen(MPK,
MSK, i), adds i to R, and sends ski to A.
• Decoding query (i, s): A issues a decoding query on a user index i ∈ U and a covertext
s ∈ Σ∗. C computes Decode(MPK,KeyGen(MPK,MSK, i), s) and gives the result to A.

Challenge: A gives C a message m∗ ∈MSP, a legal history h ∈ Σ∗, and a set of user identities
S∗ ⊆ U with the restriction that S∗ ∩R = ∅. C picks a random bit b∗ ∈ {0, 1} and generates
the challenge s∗ depending on it as follows. If b∗ = 0, then C encodes m∗ into a stegotext
s∗ for the receiver set S∗, i.e., s∗ ← Encode(MPK, S∗, h,m∗). Otherwise, C sample s∗ as a
covertext of equal length, i.e., s∗ ←$ Cl

∗
h for l∗ = |Encode(MPK, S∗, h,m∗)|/σ. At the end, C

gives s∗ to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is one of the following:

• Secret-key query i such that i 6∈ S∗.
• Decoding query (i, s) such that, if i ∈ S∗, then s 6= s∗.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.

The adversary A is called a BS-IND-CCA adversary and A’s advantage is defined as

AdvBS-IND-CCA
A,Π :=

∣∣∣Pr[b = b∗]− 1
2

∣∣∣,
where the probability is over the random coins used by the adversary A and the challenger C. ♦

Definition 3.4: A BS scheme Π is (t, Qsk, Qd, ε)-BS-CCA-secure if for any t-time BS-IND-CCA
adversary making at most Qsk adaptive secret-key queries and at most Qd adaptive decoding queries,
it is the case that AdvBS-IND-CCA

A,Π ≤ ε. ♦

By restricting the kind of decoding queries allowed in Phase 2 of the BS-IND-CCA game above,
we can obtain the BS-IND-PDR-CCA game. Specifically, the adversary now cannot issue any
decoding query (i, s) such that i ∈ S∗ and s ≡MPK s∗ for some compatible relation ≡MPK. The
adversary A in this game is called a BS-IND-PDR-CCA adversary and A’s advantage is defined as

AdvBS-IND-PDR-CCA
A,Π :=

∣∣∣Pr[b = b∗]− 1
2

∣∣∣.
Definition 3.5: A BS scheme Π is (t, Qsk, Qd, ε)-BS-PDR-CCA-secure with respect to some com-
patible relation ≡MPK if for any t-time BS-IND-PDR-CCA adversary making at most Qsk adaptive
secret-key queries and at most Qd adaptive decoding queries, it holds that AdvBS-IND-PDR-CCA

A,Π ≤ ε.♦

The BS-IND-CHA game is defined similar to the BS-IND-CCA game, with the restriction that
the adversary is not allowed to issue any decoding queries during Phase 1 and Phase 2. The
adversary is still allowed to issue secret-key queries.

Definition 3.6: A BS scheme Π is (t, Qsk, ε)-BS-CHA-secure if Π is (t, Qsk, 0, ε)-BS-CCA-secure.♦
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4 Anonymity and Pseudorandomness in Broadcast Encryption
In Sect. 2, we briefly discussed the notion of outsider-anonymous broadcast encryption [20], a security
model for BE whose goal is to hide the identities of the intended receivers of a broadcast ciphertext
from unauthorized users. As outlined in Sect. 1, a crucial technical step to realize broadcast
steganography is combining receiver anonymity with pseudorandomness of broadcast ciphertexts
(cf. Sect. 5). This section develops the notion of outsider-anonymous broadcast encryption with
pseudorandom ciphertexts (oABE$), and presents an efficient construction secure in the standard
model under a stronger security model, outsider anonymity and ciphertext pseudorandomness against
chosen-ciphertext attacks (oABE$-CCA).

4.1 The Security Models of oABE$

We now present three oABE$ security models: oABE$-CPA, oABE$-PDR-CCA, and oABE$-CCA.
In Sect. 4.2, we present an oABE$-CCA-secure construction. At a high level, these security models
require that for any message m∗ and set of recipients S∗, no PPT adversary A can distinguish
between an actual encryption of m∗ intended for the set S∗, and a truly random string of the same
length as an encryption of m∗ for S∗, so long as A does not possess the secret key of any user in S∗.

Definition 4.1: For a given oABE$ scheme Π = (Setup,KeyGen,Encrypt,Decrypt), the oABE$-
IND-CCA game, played between a PPT adversary A and a challenger C, is defined as follows:

Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master public key MPK,
keeping the master secret key MSK to itself. C also initializes the set of revoked users R to be
empty.

Phase 1: A adaptively issues queries q1, . . . , qm where each qi is one of the following:

• Secret-key query i: A requests the secret key of a user i ∈ U . C runs ski ← KeyGen(MPK,
MSK, i), adds i to R, and sends ski to A.
• Decryption query (i, c): A sends a decryption query on a user i ∈ U and a ciphertext
c ∈ CSP. C computes Decrypt(MPK,KeyGen(MPK,MSK, i), c) and gives the result to A.

Challenge: A gives C a message m∗ ∈ MSP and a set of user identities S∗ ⊆ U with the
restriction that S∗ ∩ R = ∅. C picks a random bit b∗ ∈ {0, 1} and generates the challenge
ciphertext c∗ depending on it: if b∗ = 0, then c∗ ← Encrypt(MPK, S∗,m∗), else c∗ ←$ {0, 1}l∗

for l∗ = |Encrypt(MPK, S∗,m∗)|. The challenge ciphertext c∗ is then given to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is one of the following:

• Secret-key query i such that i 6∈ S∗.
• Decryption query (i, c) such that, if i ∈ S∗, then c 6= c∗.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.

The adversary A is called an oABE$-IND-CCA adversary and A’s advantage is defined as

AdvoABE$-IND-CCA
A,Π :=

∣∣∣Pr[b = b∗]− 1
2

∣∣∣,
where the probability is over the random coins used by the adversary A and the challenger C. ♦
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Observe that the key difference of the above definition from the oABE notion defined in [20]
is in the Challenge phase, where the challenger either returns the encryption of m∗ or a random
bit-string with appropriate length.

Definition 4.2: An oABE$ scheme Π is (t, Qsk, Qd, ε)-oABE$-CCA-secure if for any t-time oABE$-
IND-CCA adversary making at most Qsk (resp. Qd) adaptive secret-key (resp. decryption) queries
we have AdvoABE$-IND-CCA

A,Π ≤ ε. ♦

The oABE$-IND-PDR-CCA game is obtained by restricting the adversary during Phase 2 of the
oABE$-IND-CCA game from submitting any decoding query (i, c) such that i ∈ S∗ and c ≡MPK c

∗,
where ≡MPK is an arbitrary compatible relation of the oABE$ scheme.2 The adversary A in this
game is called an oABE$-IND-PDR-CCA adversary and A’s advantage is defined as

AdvoABE$-IND-PDR-CCA
A,Π :=

∣∣∣Pr[b = b∗]− 1
2

∣∣∣.
Definition 4.3: An oABE$ scheme Π is (t, Qsk, Qd, ε)-oABE$-PDR-CCA-secure with respect to a
compatible relation ≡MPK if for any t-time oABE$-IND-PDR-CCA adversary making at most Qsk
adaptive secret-key queries and at most Qd adaptive decoding queries AdvoABE$-IND-PDR-CCA

A,Π ≤ ε.♦

By restricting the adversary in the oABE$-IND-CCA game from submitting any decoding queries
during Phase 1 and Phase 2, we obtain the oABE$-IND-CPA game. The adversary is still allowed
to issue secret-key queries.

Definition 4.4: An oABE$ scheme Π is (t, Qsk, ε)-oABE$-CPA-secure if Π is (t, Qsk, 0, ε)-oABE$-
CCA-secure. ♦

4.2 An oABE$-CCA-Secure Construction

Our construction builds on the one of [20], so we start with a brief review of the latter. At a high
level, the approach of [20] is to: (1) “bundle” multiple ciphertexts of an anonymous identity-based
encryption scheme (AIBE, e.g., [1, 10, 24]) into a single oABE ciphertext; (2) “tag” each AIBE
ciphertext to enable the decryptor to efficiently locate the component compatible with her decryption
key; and (3) “seal” everything together with a one-time signature to thwart CCA attacks. To
attain pseudorandom oABE ciphertexts, we will start with an anonymous identity-based encryption
scheme with pseudorandom ciphertexts (AIBE$) like the one of [2]. Additionally, we will use an
entropy-smoothing hash function [30] to hide the structure in the ciphertext tags.

These adjustments do not suffice because the presence of the one-time signature introduces
additional structure in the oABE ciphertext of [20]. To get around this, we substitute one-
time signatures with MACs (implemented via pseudorandom functions) and employ a variant
of an encapsulation mechanism [8, 19] with an additional pseudorandom property. In short, an
encapsulation mechanism is a “relaxed” commitment scheme consisting of a triplet of algorithms
(SetupCom,Commit,Open): SetupCom(1λ) produces a commitment public key PK′′; Commit(PK′′)
samples a random bit string k̂ together with associated commitment and decommitment information
com and decom; and Open(PK′′, com, decom) recovers k̂. For hiding, triples of the form (PK′′, com, k̂)
ought to be statistically indistinguishable from those of the form (PK′′, com, r) for random r. For

2The definition of a compatible relation for an oABE$ scheme follows analogously to Definition 3.2.
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Algorithm: Commit(PK′′)
1 k̂ ←$ {0, 1}λ
2 repeat
3 k̃ ←$ Zq, com := mp(gk̂comh

k̃
com)

4 until com < 2λ

5 decom := (k̂, k̃)
6 return (k̂, com, decom)

Algorithm: Open(PK′′, com, decom)
1 parse decom as (k̂, k̃)
2 if com = mp(gk̂comh

k̃
com) then

3 return k̂
4 return ⊥

Figure 3: Our Pedersen-like encapsulation mechanism.

relaxed binding, given a random output (k̂, com, decom) of Commit(PK′′), it should be hard to
produce decom′ such that Open(PK′′, com, decom′) 6∈ {k̂,⊥}.

Let p, q be primes such that 2λ < q < 2λ+1 and p = 2q+ 1, and g be a square modulo p. Denote
by G = 〈g〉 the group of quadratic residues modulo p. To “pack” quadratic residues into λ bits, we
will use rejection sampling along with the following well-known G–Zq bijection (cf. e.g., [28]):

mp(a) =
{
a if a ≤ q
p− a otherwise

mp−1(b) =
{
b if b

p−1
2 ≡ 1 mod p

p− b otherwise

Figure 3 shows the Commit and Open functionalities of our Pedersen-like [40] encapsulation
mechanism over G, whose commitment public keys are random pairs (gcom, hcom) of generators of
G. The hiding requirement follows from the hiding properties of standard Pedersen commitments,
coupled with the observation that mp(·) is a bijection. Relaxed binding follows from the discrete
logarithm assumption in G, again similarly to standard Pedersen commitments. A novel feature
of our encapsulation mechanism is that the distribution of commitments com induced by the
Commit(PK′′) algorithm is uniform over {0, 1}λ, and hence the relaxed commitment scheme of Fig. 3
has pseudorandom commitments.

Let Π′ = (Init,Ext,Enc,Dec) be an AIBE$-CCA-secure AIBE$ scheme with expansion ` (i.e.,
|Enc(MPK′, ID,m)| = `(|m|)). Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a PRF and let Hes = {G2 →
{0, 1}λ} be an entropy smoothing hash function family. Below we describe at a high level how we
combine these primitives into an oABE$-CCA-secure scheme Π; Fig. 4 reports the details.

To attain sublinear ciphertexts, we follow the approach of [20], which is based on the Subset
Cover Framework [15, 39] (cf. also App. A). We arrange the N = 2n users in a perfect binary tree
with N leaves, and assign to each user (using AIBE$) n+ 1 decryption keys, corresponding to all
the nodes in the path to its designated leaf (Line 4 of KeyGen). Each oABE$ ciphertexts consists
of multiple AIBE$ components. For efficient decryption, AIBE$ components are tagged using a
twin-DH-based [12] technique reminiscent of [21, 36] (Line 10 of Encrypt) so that recipients can
single out which AIBE$ component to decrypt, and with which key (Lines 5–8 and 9 of Decrypt).
Throughout Encrypt, we make sure that each piece in an oABE$ ciphertext looks random, with the
use of rejection sampling (Lines 3–5), entropy smoothing (Line 10), dummy components (Line 13),
and pseudorandom MACs (Line 15) in place of one-time signature. Forgoing signatures introduce
a complication, as the input to the PRF appears to depend on the PRF key k̂: the cj values and
the oABE$ components cj ’s computed in Lines 10 and 11 are derived from com and decom, which
correlate with k̂. We solve this circularity by mediating the occurrence of k̂ in the ciphertext via
the encapsulation scheme of Fig. 3 (cf. App. B for more details).
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Algorithm: Setup(1λ, N)
1 (MPK′,MSK′)← Init(1λ)
2 PK′′ ← SetupCom(1λ), H ←$ Hes
3 . Fam – the set of all the subtrees in T
4 for j := 1 to |Fam| do
5 . Tj – the subtree in Fam indexed by j
6 . HIDj – the HID of Tj ’s root
7 a1,HIDj

, a2,HIDj
, b1,HIDj

, b2,HIDj
←$ Zq

8 A1,HIDj
:= ga1,HIDj , A2,HIDj

:= ga2,HIDj

9 B1,HIDj
:= gb1,HIDj , B2,HIDj

:= gb2,HIDj

10 MPK := (MPK′,PK′′, H,N,G, g,
{Ai,HIDj , Bi,HIDj}i∈{1,2},j∈[1,|Fam|])

11 MSK := (MSK′, {ai,HIDj , bi,HIDj}i∈{1,2},j∈[1,|Fam|])
12 return (MPK,MSK)

Algorithm: KeyGen(MPK,MSK, i)
1 . HIDi – the HID of leaf i in T
2 for z := 1 to n+ 1 do
3 ski,z := (a1,HIDi|z , a2,HIDi|z , b1,HIDi|z , b2,HIDi|z )
4 ski,z ← Ext(MPK′,MSK′,HIDi|z)
5 ski := ((ski,1, ski,1), . . . , (ski,n+1, ski,n+1))
6 return ski

Algorithm: Encrypt(MPK, S,m)
1 r := N − |S|, L :=

⌊
r log

(
N
r

)⌋
2 (k̂, com, decom)← Commit(PK′′)
3 repeat
4 s ←$ Zq, c0 := mp(gs)
5 until c0 < 2λ
6 . Cov – the subtrees covering S in T
7 for j := 1 to |Cov| do
8 . Tj – a subtree in Cov
9 . HIDj – the HID of Tj ’s root

10 cj := H((Acom
1,HIDj

A2,HIDj
)s, (Bcom

1,HIDj
B2,HIDj

)s)
11 cj ← Enc(MPK′,HIDj , com‖m‖decom)
12 for j := |Cov|+ 1 to L do
13 cj ←$ {0, 1}λ, cj ←$ {0, 1}`(3λ+1+|m|)

14 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL
15 σ := F (k̂, ĉ), c := σ‖ĉ‖com
16 return c

Algorithm: Decrypt(MPK, ski, c)
1 parse ski as ((ski,1, ski,1), . . . , (ski,n+1, ski,n+1))
2 parse c as σ‖ĉ‖com
3 parse ĉ as c0‖c1‖c1‖ . . . ‖cL‖cL
4 c̃0 := mp−1(c0)
5 for z := 1 to n+ 1 do
6 parse ski,z as (ã1,z, ã2,z, b̃1,z, b̃2,z)
7 tagz := H(c̃ ã1,zcom+ã2,z

0 , c̃
b̃1,zcom+b̃2,z

0 )
8 if ∃z ∈ [1, n+ 1] ∃j ∈ [1, L] : tagz = cj then
9 m′ := Dec(MPK′, ski,z, cj)

10 if m′ 6= ⊥ then
11 parse m′ as com‖m‖decom
12 if com = com then
13 k̂ := Open(PK′′, com, decom)
14 if k̂ 6= ⊥ ∧ σ = F (k̂, ĉ) then
15 return m

16 return ⊥

Figure 4: The oABE$-CCA-secure construction. T is the perfect binary tree with N = 2n leaves, which
represent the users in the system. HIDi|z denotes a prefix of the hierarchical identifier HIDi with length z.
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Function: Sample(λ, h,H, c)
Input: parameter λ, history h,

function H, bit-string c
Output: stegotext s

1 l := |c|
2 for i := 1 to l do
3 j := 0
4 repeat
5 j := j + 1, si ← Ch
6 until H(si) = ci ∨ j = λ
7 h := h‖si
8 s := s1‖ . . . ‖sl
9 return s

(a) Regular

Function: DSample(λ,H, c, r)
Input: parameter λ, function H,

bit-string c, randomness r
Output: stegotext s

1 l := |c|
2 for i := 1 to l do
3 j := 0
4 repeat
5 j := j + 1, si := Channel(rλλ(i−1)+j)
6 until H(si) = ci ∨ j = λ

7 s := s1‖ . . . ‖sl
8 return s

(b) Deterministic

Figure 5: The rejection-sampler functions.

Theorem 4.5 (Proof in App. B): If F is a (t1, ε1)-hard PRF, Π′ is (t2, Qsk, Qd, ε2)-AIBE$-
CCA-secure, Hes is a (t3, ε3)-entropy smoothing hash function, and DDH is (t4, ε4)-hard in G, then
the construction given in Fig. 4 is

(
t1 + t2 + t3 + t4, Qsk, Qd,

(
ε1 + ε2 + ε3 + 2

(
ε4 + Qd

q

))
r log

(
N
r

))
-

oABE$-CCA-secure, where N is the total number of users and r is the number of revoked users.�

5 Constructions of Public-Key Broadcast Steganography
We now present three constructions of broadcast steganography: one for each model of security
defined in Sect. 3.2. Our constructions employ the encrypt-then-embed paradigm depicted in Fig. 2,
using oABE$ (Sect. 4) for encryption and rejection-sampling [3, 29, 44] for embedding. In what
follows, sσi denotes the ith leftmost non-overlapping substring with length σ of a given bit-string s.

5.1 A BS-CHA-Secure Construction

The rejection-sampler function used in our first construction is given in Fig. 5a. Sample takes
as input a security parameter λ, a channel history h ∈ Σ∗, a function H : Σ → {0, 1}, and a
bit-string c ∈ {0, 1}∗, and outputs a covertext s ∈ Σ∗. Internally, for every bit ci, Sample attempts
to find a covertext sσi ∈ Σ such that H(sσi ) = ci by repeatedly querying the channel oracle up
to λ number of times.3 This mechanism allows a simple method to extract c from s: compute
c = H(sσ1 )‖ . . . ‖H(sσl ) where l = |s|/σ. As shown in [4, 44], if the channel is always informative, H
is a strongly universal hash function, and c is uniformly random, then the maximum statistical
distance between s1 ← Sample(λ, h,H, c) and s2 ← C

|c|
h for any valid h ∈ Σ∗ is negligible in the

security parameter λ. For simplicity, we denote this statistical distance when |c| = 1 by ε1 in the
reminder of the paper.

We obtain our BS-CHA-secure scheme by combining the rejection-sampler function from Fig. 5a
with our oABE$ scheme (cf. Sect. 4). Formally, given a strongly universal hash function family
Hsu = {H : Σ→ {0, 1}} and an oABE$-CPA-secure oABE$ scheme Π′ = (Setup′,KeyGen′,Encrypt′,

3Sample may fail to find a valid si during the λ iterations, but only with negligible probability in the parameter λ.
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Algorithm: Setup(1λ, N)
1 (MPK′,MSK′)← Setup′(1λ, N)
2 H ←$ Hsu
3 MPK := (MPK′, H)
4 MSK := MSK′
5 return (MPK,MSK)

Algorithm: Encode(MPK, S, h,m)
1 c← Encrypt′(MPK′, S,m)
2 s← Sample(λ, h,H, c)
3 return s

Algorithm: KeyGen(MPK,MSK, i)
1 ski ← KeyGen′(MPK′,MSK′, i)
2 return ski

Algorithm: Decode(MPK, ski, s)
1 l := |s|/σ
2 for j := 1 to l do
3 cj := H(sσj )
4 c := c1‖ . . . ‖cl
5 m := Decrypt′(MPK′, ski, c)
6 return m

Figure 6: The BS-CHA-secure construction.

Decrypt′) with expansion ` (i.e., |Encrypt′(MPK′, S,m)| = `(|m|)), we construct a BS-CHA-secure
broadcast steganography scheme Π = (Setup,KeyGen,Encode,Decode) as shown in Fig. 6.

Theorem 5.1 (Proof in App. C): If the channel is always informative, Hsu is a strongly uni-
versal hash function family, and Π′ is (t2, Qsk, ε2)-oABE$-CPA-secure, then the construction in
Fig. 6 is (t2, Qsk, µε1 + ε2)-BS-CHA-secure, where µ is the polynomial bound on the total message
length. �

Remark 5.1. If the oABE$ scheme employed in Fig. 6 is oABE$-PDR-CCA-secure, then the resulting
broadcast steganography scheme is BS-PDR-CCA-secure.

5.2 A BS-CCA-Secure Construction

Unfortunately, our first construction fails to provide a BS-CCA-secure broadcast steganography
scheme even if the oABE$ scheme internally used provides oABE$-CCA security. The problem
is that the rejection-sampler function from Fig. 5a allows multiple covertexts corresponding to a
given bit-string. However, this limitation can be overcome in the case of channels that are efficiently
computable and whose samples are independently distributed. In fact, for channels of this type,
Hopper [27] devised a deterministic rejection-sampler function DSample that maps a given bit-string
to exactly one covertext.

As shown in Fig. 5b, DSample takes in input a security parameter λ, a predicate H : Σ→ {0, 1}
along with a bit-string c ∈ {0, 1}∗ to embed, and a random bit-string r ∈ {0, 1}|c|·λ2 that controls the
embedding. To sample s ∈ Σ∗, for every bit ci of c, DSample seeks sσi ∈ Σ such that H(sσi ) = ci, by
repeatedly drawing from the channel according to the random chunks specified in r. This approach
requires that the channel be efficiently computable by a function Channel(·) whose samples are
independent of the history (hence we drop h from its input), but guarantees that an adversary who
intercepts a stegotext is unable to tweak it meaningfully. Furthermore, as shown in [4, 28, 44], if
H is a strongly universal hash function, and c and r are uniformly random, then the statistical
distance between stegotexts produced by DSample and innocent covertexts sampled from Channel(·)
is a negligible function ε1 of λ.

Figure 7 reports the details of our BS-IND-CCA-secure scheme Π = (Setup,KeyGen,Encode,
Decode), based on a strongly universal hash function family Hsu, a variable-length pseudorandom
generator (vPRG) G : {0, 1}λ × Z→ {0, 1}∗ (whose second input sets the output length), and an
oABE$-IND-CCA-secure scheme Π′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) with expansion `.
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Algorithm: Setup(1λ, N)
1 (MPK′,MSK′)← Setup′(1λ, N)
2 H ←$ Hsu
3 MPK := (MPK′, H,G)
4 MSK := MSK′
5 return (MPK,MSK)

Algorithm: Encode(MPK, S,m)
1 r̂ ←$ {0, 1}λ
2 c← Encrypt′(MPK′, S, r̂‖m)
3 r := G(r̂, |c| · λ2)
4 s := DSample(λ,H, c, r)
5 return s

Algorithm: KeyGen(MPK,MSK, i)
1 ski ← KeyGen′(MPK′,MSK′, i)
2 return ski

Algorithm: Decode(MPK, ski, s)
1 l := |s|/σ
2 for j := 1 to l do
3 cj := H(sσj )
4 c := c1‖ . . . ‖cl
5 m′ := Decrypt′(MPK′, ski, c)
6 if m′ 6= ⊥ then
7 parse m′ as r̂‖m
8 r := G(r̂, l · λ2)
9 if DSample(λ,H, c, r) = s then

10 return m

11 return ⊥

Figure 7: The BS-CCA-secure construction.

Theorem 5.2 (Proof in App. D): If the channel is always informative, Hsu is a strongly univer-
sal hash function family, G is a (t2, ε2)-hard vPRG, and Π′ is (t3, Qsk, Qd, ε3)-oABE$-CCA-secure,
then the construction in Fig. 7 is (t2 + t3, Qsk, Qd, µε1 + ε2 + ε3)-BS-CCA-secure, where µ is the
polynomial bound on the total message length. �

6 Extensions and Future Work
As in the case of broadcast encryption, one may consider extensions of the notion of broadcast
steganography that enhance the setting discussed in this paper with additional functionality or
security properties. In particular, while broadcast steganography natively protects the recipients’
identities from outsiders, it does not aim to prevent recipients from finding out about each other.
The natural solution for that is anonymous broadcast steganography (AnoBS). By extending the
anonymous broadcast encryption schemes of [5,36] to support ciphertext pseudorandomness, we can
use them in place of our oABE$ to achieve fully anonymous broadcast steganography. The resulting
AnoBS scheme, however, would have ciphertexts with length linear in the number of receivers.

Acknowledgments
Nelly Fazio’s research is sponsored in part by NSF CAREER award #1253927 and NSF award
#1117675, and by PSC-CUNY award 64578-00 42 (jointly funded by the Professional Staff Congress
and the City University of New York). Nelly Fazio and Irippuge Milinda Perera are supported in part
by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number
W911NF-06-3-0001. Antonio Nicolosi’s research is sponsored in part by NSF awards #1117679 and
#1040784. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints

15



for Government purposes notwithstanding any copyright notation hereon.

References
[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier,

and H. Shi. Searchable encryption revisited: Consistency properties, relation to Anonymous IBE, and
extensions. In Advances in Cryptology—CRYPTO, pages 205–222, 2005.

[2] S. Agrawal and X. Boyen. Identity-based encryption from lattices in the standard model. Manuscript,
2009. http://www.cs.stanford.edu/~xb/ab09/.

[3] R. Anderson and F. Petitcolas. On the limits of steganography. IEEE Journal on Selected Areas in
Communications, 16(4):474–481, 1998.

[4] M. Backes and C. Cachin. Public-key steganography with active attacks. In Theory of Cryptography—
TCC, pages 210–226, 2005.

[5] A. Barth, D. Boneh, and B. Waters. Privacy in encrypted content distribution using private broadcast
encryption. In Financial Cryptography and Data Security—FC, pages 52–64, 2006.

[6] S. Berkovits. How to broadcast a secret. In Advances in Cryptology—EUROCRYPT, pages 535–541,
1991.

[7] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts
and private keys. In Advances in Cryptology—CRYPTO, pages 258–275, 2005.

[8] D. Boneh and K. Jonathan. Improved efficiency for CCA-secure cryptosystems built using identity-based
encryption. In Topics in Cryptology—CT-RSA, pages 87–103, 2005.

[9] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke system. In ACM
Conference on Computer and Communications Security—CCS, pages 211–220, 2006.

[10] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles).
In Advances in Cryptology—CRYPTO, pages 290–307, 2006.

[11] C. Cachin. An information-theoretic model for steganography. Information and Computation, 192(1):41–
56, 2004.

[12] D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. In Advances in
Cryptology—EUROCRYPT, pages 127–145, 2008.

[13] N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai. Covert multi-party computation. In IEEE
Symposium on Foundations of Computer Science—FOCS, pages 238–248, 2007.

[14] N. Dedic, G. Itkis, L. Reyzin, and S. Russell. Upper and Lower Bounds on Black-Box Steganography.
Journal of Cryptology, 22(3):365–394, 2009.

[15] Y. Dodis and N. Fazio. Public-key broadcast encryption for stateless receivers. In Digital Rights
Management—DRM, pages 61–80, 2002.

[16] Y. Dodis and N. Fazio. Public-key trace and revoke scheme secure against adaptive chosen ciphertext
attack. In Public Key Cryptography—PKC, pages 100–115, 2003.

[17] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable public-key tracing and revoking. In ACM
Symposium on Principles of Distributed Computing—PODC, pages 190–199, 2003. Invited to the Special
Issue of Journal of Distributed Computing PODC 2003.

[18] Y. Dodis, N. Fazio, A. Lysyanskaya, and D. Yao. ID-based encryption for complex hierarchies with
applications to forward security and broadcast encryption. In ACM Conference on Computer and
Communications Security—CCS, pages 354–363, 2004.

16

http://www.cs.stanford.edu/~xb/ab09/


[19] Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In Theory of Cryptography—
TCC, pages 188–209, 2005.

[20] N. Fazio and I. M. Perera. Outsider-anonymous broadcast encryption with sublinear ciphertexts. In
Public Key Cryptography—PKC, pages 225–242, 2012.

[21] N. Fazio and I. M. Perera. Outsider-anonymous broadcast encryption with sublinear ciphertexts.
Cryptology ePrint Archive, Report 2012/129, 2012. Full Version of [20].

[22] A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology—CRYPTO, pages 480–491,
1993.

[23] J. A. Garay, J. Staddon, and A. Wool. Long-lived broadcast encryption. In Advances in Cryptology—
CRYPTO, pages 333–352, 2000.

[24] C. Gentry. Practical identity-based encryption without random oracles. In Advances in Cryptology—
EUROCRYPT, pages 445–464, 2006.

[25] C. Gentry and B. Waters. Adaptive security in broadcast encryption systems (with short ciphertexts).
In Advances in Cryptology—EUROCRYPT, pages 171–188, 2009.

[26] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In Advances in Cryptology—CRYPTO,
pages 47–60, 2002.

[27] N. J. Hopper. Toward a Theory of Steganography. PhD thesis, Carnegie Mellon University, 2004.

[28] N. J. Hopper. On steganographic chosen covertext security. In Automata, Languages and Programming—
ICALP, pages 311–323, 2005.

[29] N. J. Hopper, J. Langford, and L. von Ahn. Provably Secure Steganography. In Advances in Cryptology—
CRYPTO, pages 77–92, 2002.

[30] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In IEEE Symposium on Foundations of
Computer Science—FOCS, pages 248–253, 1989.

[31] S. Katzenbeisser and F. A. Petitcolas. Defining security in steganographic systems. In Security and
Watermarking of Multimedia Contents IV, pages 50–56, 2002.

[32] A. Kiayias, Y. Raekow, and A. Russell. Efficient steganography with provable security guarantees. In
Information Hiding—IH, pages 118–130, 2005.

[33] A. Kiayias, A. Russell, and N. Shashidhar. Key-efficient steganography with provable security guarantees.
In Information Hiding—IH, pages 118–130, 2012.

[34] A. Kiayias and K. Samari. Lower bounds for private broadcast encryption. In Information Hiding—IH,
pages 176–190, 2012.

[35] T. Le and K. Kurosawa. Efficient Public Key Steganography Secure Against Adaptive Chosen Stegotext
Attacks. Cryptology ePrint Archive, Report 2003/244, 2003.

[36] B. Libert, K. G. Paterson, and E. A. Quaglia. Anonymous broadcast encryption. In Public Key
Cryptography—PKC, pages 206–224, 2012.

[37] A. Lysyanskaya and M. Meyerovich. Provably Secure Steganography with Imperfect Sampling. In Public
Key Cryptography—PKC, pages 123–139, 2006.

[38] W. Mazurczyk, M. Karas, and K. Szczypiorski. Skyde: A skype-based steganographic method, 2013.
arxiv.org/abs/1301.3632.

[39] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In Advances
in Cryptology—CRYPTO, pages 41–62, 2001.

17

arxiv.org/abs/1301.3632


[40] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Advances
in Cryptology—CRYPTO, pages 129–140, 1991.

[41] L. Reyzin and S. Russell. Simple Stateless Steganography. Cryptology ePrint Archive, Report 2003/093,
2003.

[42] G. Simmons. The Prisoners’ Problem and the Subliminal Channel. In Advances in Cryptology—CRYPTO,
pages 51–67, 1983.

[43] The Economist. Speaking with silence, February 2013.

[44] L. von Ahn and N. J. Hopper. Public-key steganography. In Advances in Cryptology—EUROCRYPT,
pages 323–341, 2004.

[45] L. von Ahn, N. J. Hopper, and J. Langford. Covert two-party computation. In ACM Symposium on
Theory of Computing—STOC, pages 513–522, 2005.

[46] D. Zuckerman. General weak random sources. In IEEE Symposium on Foundations of Computer
Science—FOCS, pages 534–543, 1990.

A Review of the Subset Cover Framework
The subset cover (SC) framework proposed by Naor et al. [39] is a system that abstracts a variety
of revocation schemes in the private-key setting where only the Center can broadcast. In a nutshell,
a revocation scheme belonging to the SC framework defines a collection of subsets S of the universe
of users U = [1, N ] in the system. During the key generation phase, the Center assigns to each
subset Si ∈ S a long-lived key ki, which is also given to each user belonging to Si. When the Center
wants to broadcast a message m, it generates a short-lived session key k̂, determines the set of
revoked users R, finds a set of disjoint subsets Ŝ from S that contains or “covers” all the users in
U\R, encrypts k̂ using the long-lived keys corresponding to the subsets in Ŝ, and finally broadcasts
the encryption of m under k̂ and the encryptions of k̂ to all the users in the system. Upon receiving
a broadcast ciphertext, a user can decrypt successfully and obtain m if and only if that user is part
of the authorized set (i.e., the user possesses a long-lived key corresponding to some subset of Ŝ).

The authors in [39] also presented two concrete revocation schemes, namely the complete subtree
(CS) method and the subset difference (SD) method. In the CS method, which is the simplest of the
two, the ciphertext length is O

(
r log

(
N
r

))
and the secret key length at a receiver is O

(
logN

)
, where

r is the number of revoked users. In the SD method, the one with more involved computations,
the ciphertext length reduces to O

(
r
)
while the secret key length increases to O

(
log2N

)
. Another

crucial difference between the two schemes is that the assignment of the long-lived keys in the
former is information-theoretic, whereas in the latter its computational. Below we provide a short
description of the CS method, and we refer the reader to [39] for further details on the SD method.

Complete Subtree Method. In this scheme, the N users are represented as the leaves of a
perfect binary tree T and the collection of subsets S contains all possible subtrees of T . In case N
is not a power of 2, some dummy users are added to the system. During the key generation phase,
every subtree in S is assigned a long-lived secret key which is also made available to all the users
belonging to that subtree. Since every user is a member of all the subtrees rooted at each node in
the path from the root of T down to the leaf corresponding to that user, the secret key length at a
user is O

(
logN

)
. The ciphertext length becomes O

(
r log

(
N
r

))
due to the fact that it requires on

average a logarithmic number of subtrees to revoke r users (see [39] for a formal analysis).
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Extension of the SC Framework to the Public-Key Setting. The original SC framework
was defined in the private-key setting. In [15], Dodis and Fazio extended the SC framework to the
public-key setting by combining a novel assignment of hierarchical identifiers (HIDs) to the nodes in
T with (hierarchical) identity-based encryption ((H)IBE). For completeness, we only explain below
the extension of the CS method. We refer to [15] for the specifics regarding the SD method.

The assignment of HIDs to the nodes in T goes as follows. First, the root of T is assigned
a special identifier denoted by ε. Next, each edge e of T is assigned the identifier IDe ∈ {0, 1}
depending on whether the edge connects to the left child or to the right child. Then, the hierarchical
identifier HIDv of any node v can be computed by concatenating all the identifiers starting from the
root of T down to v (i.e., HIDv := ε‖IDe1‖ . . . ‖IDelog N

). It is important to note that any prefix of
HIDv represents a valid HID of an ancestor of v.

Once the HIDs of the nodes are assigned, the authors employ an IBE scheme in order to encrypt
the short-lived session keys during broadcasts. The long-lived keys of the subsets in S now become
the IBE keys corresponding to the HIDs of the nodes in T . Since the structure of the T and the
assignment of HIDs are publicly known to all the users, any user in the system can be a sender as
well as a receiver. In the public-key setting, the Center becomes the trusted authority that provides
each user with the required IBE keys.

B Proof of Theorem 4.5
Proof. We organize our proof as a sequence of games (Game0,Game1,Game1, . . . ,Gamel,Gamel)
between an oABE$-IND-CCA adversary A and the challenger C, where l denotes the cardinality of
the coverset Cov induced by the set of authorized receivers S∗ chosen by A during the Challenge
phase of the oABE$-IND-CCA game. In the first game (Game0), A receives an encryption of m∗ for
S∗ in the Challenge phase, and in the last game (Gamel), A receives a uniformly random bit-string
of the appropriate length as the challenge ciphertext.

Game0: corresponds to the game given in Definition 4.1 when the challenge bit b∗ is fixed to 0.
The interaction between A and C during Setup, Phase 1, Phase 2, and Guess follows exactly
as specified in Definition 4.1. During the Challenge phase, A gives C a message m∗ ∈MSP
and a set of user identities S∗ ⊆ U with the restriction that S∗ ∩R = ∅, where R is the set
of users that A corrupted during Phase 1. C computes the challenge ciphertext c∗, which is
subsequently sent to A, as follows:

1 r := N − |S∗|, L :=
⌊
r log

(
N
r

)⌋
2 (k̂, com, decom)← Commit(PK′′)
3 repeat s ←$ Zq, c0 := mp(gs) until c0 < 2λ
4 for j := 1 to l do
5 cj := H((Acom

1,HIDj
A2,HIDj )s, (Bcom

1,HIDj
B2,HIDj )s)

6 cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
7 for j := l + 1 to L do
8 cj ←$ {0, 1}λ
9 cj ←$ {0, 1}`(3λ+1+|m∗|)

10 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL
11 σ := F (k̂, ĉ), c∗ := σ‖ĉ‖com

Gameh(1 ≤ h ≤ l): is similar to Gameh−1, but, when creating c∗, C replaces Lines 4–9 with:
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1′ for j := 1 to l − h do
2′ cj := H((Acom

1,HIDj
A2,HIDj

)s, (Bcom
1,HIDj

B2,HIDj
)s)

3′ cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
4′ cl−h+1 := H((Acom

1,HIDl−h+1
A2,HIDl−h+1)s, (Bcom

1,HIDl−h+1
B2,HIDl−h+1)s)

5′ cl−h+1 ←$ {0, 1}`(3λ+1+|m∗|)

6′ for j := l − h+ 2 to L do
7′ cj ←$ {0, 1}λ
8′ cj ←$ {0, 1}`(3λ+1+|m∗|)

Gameh(1 ≤ h ≤ l): is similar to Gameh, but, when creating c∗, C replaces Lines 4′–8′ with:
1′′ for j := l − h+ 1 to L do
2′′ cj ←$ {0, 1}λ
3′′ cj ←$ {0, 1}`(3λ+1+|m∗|)

For 0 ≤ i1 ≤ l and 1 ≤ i2 ≤ l let Advi1A,Π and Adv i2A,Π denote A’s advantage in winning Gamei1
and Gamei2 respectively. In Lemma B.1, we show that if the underlying PRF F is (t1, ε1)-hard and
the AIBE$ scheme Π′ is (t2, Qsk, Qd, ε2)-AIBE$-CCA-secure, then A’s advantage of distinguishing
Gameh−1 from Gameh is at most ε1 + ε2. In Lemma B.2, we show that if Hes is an (t2, ε2)-entropy
smoothing family of hash functions and DDH is (t4, ε4)-hard in G, then A has at most ε3 +2

(
ε4 + Qd

q

)
advantage in distinguishing Gameh from Gameh. Therefore,∣∣∣Adv0

A,Π − AdvlA,Π
∣∣∣ ≤ (ε1 + ε2 + ε3 + 2

(
ε4 + Qd

q

))
l ≤

(
ε1 + ε2 + ε3 + 2

(
ε4 + Qd

q

))
L

≤
(
ε1 + ε2 + ε3 + 2

(
ε4 + Qd

q

))
r log

(
N

r

)
.�

Lemma B.1: For 1 ≤ h ≤ l, if the underlying PRF F is (t1, ε1)-hard and the AIBE$ scheme Π′ is
(t2, Qsk, Qd, ε2)-AIBE$-CCA-secure, then A’s advantage of distinguishing Gameh−1 from Gameh is
at most ε1 + ε2. �

Proof. We build a PPT adversary B that internally runs the oABE$-IND-CCA game with the
adversary A in order to gain advantage in the AIBE$-IND-CCA game with the challenger C′. We
denote the secret-key oracle and the decryption oracle of C′ by O′sk(·) and O′d(·, ·) respectively. After
receiving the master public key MPK′ of the AIBE$ scheme from C′, B executes the oABE$-IND-CCA
game with A as follows:

Setup: B generate MPK, which he eventually sends to A, by executing Lines 2–10 of the Setup
algorithm of Fig. 4. B also keeps the exponents {ai,HIDj

, bi,HIDj
}i∈{1,2},j∈[1,|Fam|] to himself and

initializes the set of revoked users R to be empty.

Phase 1: When A invokes a secret-key query for user i, B computes the secret key ski by executing
lines Lines 1–6 of the KeyGen algorithm of Fig. 4 with one modification: during Line 4, B sets
ski,z ← O′sk(HIDi|z). Next, after adding i to R, B sends ski to A.
When A invokes a decryption query (i, c), B computes the hierarchical identifier of leaf i in
T HIDi and proceeds as follows:

1 parse c as σ‖ĉ‖com

20



2 parse ĉ as c0‖c1‖c1‖ . . . ‖cL‖cL
3 c̃0 := mp−1(c0)
4 for z := 1 to n+ 1 do
5 ã1,z := a1,HIDi|z , ã2,z := a2,HIDi|z b̃1,z := b1,HIDi|z , b̃2,z := b2HIDi|z

6 tagz := H(c̃ ã1,zcom+ã2,z

0 , c̃
b̃1,zcom+b̃2,z

0 )
7 if ∃z ∈ [1, n+ 1] ∃j ∈ [1, L] : tagz = cj then
8 m′ := O′d(HIDi|k, cj)
9 if m′ 6= ⊥ then

10 parse m′ as com‖m‖decom
11 if com = com then
12 k̂ := Open(PK′′, com, decom)
13 if k̂ 6= ⊥ ∧ σ = F (k̂, ĉ) then
14 return m
15 return ⊥

Challenge: After receiving from A a message m∗ ∈MSP and a set of user identities S∗ ⊆ U with
the restriction that S∗ ∩R = ∅, B picks (k̂, com, decom)← Commit(PK′′) and sets

ID′ := HIDl−h+1, m′ := com‖m∗‖decom.

Next, B sends the identity ID′ and the messages m′ as the challenge query to C′. Then, C′
picks a random bit b′ ∈ {0, 1} and generates the challenge ciphertext c′ depending on it: if
b′ = 0, then c′ ← Enc(MPK′, ID′, com‖m∗‖decom), else c′ ←$ {0, 1}`(|m′|), and returns c′ to B.
Finally, B computes the challenge ciphertext c∗, which is eventually sent to A, as follows:

1 r := N − |S∗|, L :=
⌊
r log

(
N
r

)⌋
2 repeat s ←$ Zq, c0 := mp(gs) until c0 < 2λ
3 for j := 1 to l − h do
4 cj := H((Acom

1,HIDj
A2,HIDj

)s, (Bcom
1,HIDj

B2,HIDj
)s)

5 cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
6 cl−h+1 := H((Acom

1,HIDl−h+1
A2,HIDl−h+1)s, (Bcom

1,HIDl−h+1
B2,HIDl−h+1)s)

7 cl−h+1 := c′

8 for j := l − h+ 2 to L do
9 cj ←$ {0, 1}λ

10 cj ←$ {0, 1}`(3λ+1+|m∗|)

11 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL
12 σ := F (k̂, ĉ), c∗ := σ‖ĉ‖com

Phase 2: Secret-key queries are handled similarly to Phase 1, with the usual restriction that A
does not invoke a secret-key query i such that i ∈ S∗.
As for decryption queries, B replies to (i, c = σ‖ĉ‖com), according to one of the following
cases:

• If c = c∗ and i 6∈ S∗, then B proceeds as in Phase 1. (Note that in this case B’s output
will be ⊥, as it should be.)
• If c = c∗, and i ∈ S∗, B just rejects since A is submitting an invalid query.
• If c 6= c∗ and i 6∈ S∗, then B proceeds as in Phase 1.
• If c 6= c∗ and i ∈ S∗, then B computes HIDi and proceeds as follows:
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� If for all z = 1 to n+ 1, it is the case that HIDi|z 6= HIDl−h+1, then B proceeds as
in Phase 1. Observe that the condition ∀z ∈ [1, n+ 1] : HIDi|z 6= HIDl−h+1 ensures
that the decryption query that B will make to its challenger C′ in the process of
responding to A’s query is allowed.
� If ∃ z ∈ [1, n+ 1] such that HIDi|z = HIDl−h+1, and c′ does not appear among the

ciphertext components of c, then again B proceeds as in Phase 1. Observe that the
condition that c does not contain c′ ensures that also in this case the decryption
query that B will make to its challenger C′ in the process of responding to A’s query
is allowed.
� If ∃ z ∈ [1, n+ 1] such that HIDi|z = HIDl−h+1, but c′ appears among the ciphertext

components of c, then B outputs ⊥. Arguing that this (i.e., ⊥) is the real reply that
A would get in either Gameh or Gameh requires some care, but can be done along the
lines of the proofs of [8] and [19]. In a nutshell, the issue is the circularity in the PRF
usage: in generating the σ component of the ciphertext, F (k̂, ·) is computed over ĉ,
which includes ciphertext components that contain com and decom, which in turn
correlate with k̂. The reason this circularity does not break the argument is that the
appearance of k̂ into the ciphertext is mediated by the relaxed commitment scheme.
In particular, since com is included both in the clear and inside each ciphertext
component (which are individually AIBE-CCA-secure as part of c∗), and since the
decryption algorithm checks that they be consistent, the adversary is forced to
keep in the outer layer of her query ciphertext c the same value of com that was
in the challenge c∗, or decryption would fail. Now for that value of com, by the
relaxed binding property, the only valid PRF key that can be decommitted is k̂. At
this point the argument would seem to get stuck again, as it is not apparent how
to guarantee that the adversary does not learn enough about k̂ from the several
ciphertext components in c∗ so as to be able to compute F -values under that key.
As it turns out, this point can also be tamed through a separate sequence-of-games
analysis [8]. It then follows that the adversary will not be able to compute the proper
σ for the ciphertext she was trying to craft, which finally fully justifies the ⊥ reply
by the simulator.

Guess: A outputs a guess b and B passes this bit as his guess for b′ to C′.

Observe that, by construction, it holds that if C′ chooses b′ = 0, then B is playing Gameh−1,
whereas if b′ = 1, then B is playing Gameh. Therefore, the PRF and the AIBE$-IND-CCA advantage
of B is essentially A’s advantage in distinguishing Gameh−1 from Gameh:

∣∣∣Advh−1
A,Π − Adv hA,Π

∣∣∣ ≤
ε1 + ε2. �

Lemma B.2: For 1 ≤ h ≤ l, if Hes in an (t3, ε3)-entropy smoothing hash function family and
DDH is (t4, ε4)-hard in G, then A’s advantage of distinguishing Gameh from Gameh is at most
ε3 +

(
ε4 + Qd

q

)
. �

Proof Sketch. The proof of this lemma follow with the help of two intermediate games G̃ame1,h and
G̃ame2,h. During the transition from Gameh to G̃ame1,h, we replace (Bcom

1,HIDl−h+1
B2,HIDl−h+1)s with

a random group element r2 ∈ G. Next, during the transition from G̃ame1,h to G̃ame2,h, we replace
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(Acom
1,HIDl−h+1

A2,HIDl−h+1)s with another random group element r1 ∈ G. Finally, during the transition
from G̃ame2,h to Gameh, we replace H(r1, r2) with a truly random bit-string of length λ.

The idea of the proof of the first two transitions is to reduce from the DDH problem and build
a PPT adversary B that internally executes the oABE$-IND-CCA game with the adversary A in
order to gain advantage in breaking the DDH assumption. This reduction argument proceeds along
the same lines as Lemma 1 of [36]. As for the second transition, we employ the fact that Hes is an
entropy smoothing hash function. �

C Proof of Theorem 5.1
Proof. We organize the proof as a sequence of games (Game0, Game1, Game2) between a BS-IND-
CHA adversary A and a challenger C. During the Challenge phase in Game0, A is given a stegotext
for m∗ under S∗, whereas in Game2, A is given a covertext consisting of some samples from the
channel oracle.

Game0: is the actual BS-IND-CHA game when the challenge bit b∗ is fixed to 0. The interaction
betweenA and C during Setup, Phase 1, Phase 2, and Guess follows as specified in Definition 3.3.
During the Challenge phase, A sends C a message m∗ ∈ MSP, a legal history h ∈ Σ∗, and
a set of user identities S∗ ⊆ U with the restriction that S∗ ∩ R = ∅. Next, C generates the
challenge stegotext s∗, which is later sent to A, as follows:

1 c← Encrypt′(MPK′, S∗,m∗)
2 s∗ ← Sample(λ, h,H, c)

Game1: is similar to Game0, but C computes the challenge s∗ as follows:
1 c ←$ {0, 1}`(|m∗|)
2 s∗ ← Sample(λ, h,H, c)

Game2: is similar to Game1, but C now computes the challenge s∗ as a covertext consisting of
samples from the channel oracle:

1 s∗ ← C
`(|m∗|)
h

For 0 ≤ i ≤ 2, let AdviA,Π denote A’s advantage of winning Gamei. Since Π′ is (t2, Qsk, ε2)-
oABE$-CPA-secure, it follows from a straightforward reduction argument that A’s advantage in
distinguishing Game0 from Game1 is at most ε2 (i.e.,

∣∣Adv0
A,Π − Adv1

A,Π
∣∣ ≤ ε2). Once we bound the

total message length by the polynomial µ, it follows from another simple reduction argument that
A’s advantage in distinguishing Game1 from Game2 is at most µε1 (i.e.,

∣∣Adv1
A,Π − Adv2

A,Π
∣∣ ≤ µε1).

Therefore, we have ∣∣∣Adv0
A,Π − Adv2

A,Π

∣∣∣ ≤ µε1 + ε2.

The theorem then follows from the observation that Game2 amounts to the actual BS-IND-CHA
game when the challenge bit b∗ is fixed to 1. �

D Proof of Theorem 5.2
Proof. We organize this proof as a sequence of games (Game0, Game1, Game2, Game3) between a
BS-IND-CCA adversary A and a challenger C. During the Challenge phase of Game0, A is given
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a stegotext for m∗ under S∗. The stegotext given to A during the Challenge phase of Game3,
on the other hand, consists just of documents sampled from the channel function under uniform
randomness.

Game0: is the actual BS-IND-CCA game when the challenge bit b∗ is fixed to 0. The interaction
betweenA and C during Setup, Phase 1, Phase 2, and Guess follows as specified in Definition 3.3.
After A submitted a message m∗ ∈ MSP and a set of user identities S∗ ⊆ U (with the
restriction that S∗ ∩R = ∅) during the Challenge phase, C generates the challenge stegotext
s∗, which is later given to A, as follows:

1 r̂ ←$ {0, 1}λ
2 c← Encrypt′(MPK′, S∗, r̂‖m∗)
3 r := G(r̂, |c| · λ2)
4 s∗ := DSample(λ,H, c, r)

Game1: is similar to Game0, but C computes the challenge stegotext s∗ as follows:
1 r̂ ←$ {0, 1}λ
2 c ←$ {0, 1}`(λ+|m∗|)

3 r := G(r̂, |c| · λ2)
4 s∗ := DSample(λ,H, c, r)

Game2: is similar to Game1, but C now computes the challenge stegotext s∗ as:
1 c ←$ {0, 1}`(λ+|m∗|)

2 r ←$ {0, 1}|c|·λ2

3 s∗ := DSample(λ,H, c, r)

Game3: is similar to Game2, but C generates the challenge stegotext s∗ as follows:
1 l := `(λ+ |m∗|)
2 for j := 1 to l do
3 r ←$ {0, 1}λ
4 s∗j := Channel(r)
5 s∗ := s∗1‖ . . . ‖s∗l

For 0 ≤ i ≤ 3, let AdviA,Π denote A’s advantage of winning Gamei. Because Π′ is (t3, Qsk, Qd, ε3)-
oABE$-CCA-secure, it follows from a simple reduction argument that A’s advantage in distinguishing
Game0 from Game1 is at most ε3 (i.e.,

∣∣Adv0
A,Π − Adv1

A,Π
∣∣ ≤ ε3). Since G is (t2, ε2)-hard, it follows

from another straightforward reduction argument that A’s advantage in distinguishing Game1
from Game2 is at most ε2 (i.e.,

∣∣Adv1
A,Π − Adv2

A,Π
∣∣ ≤ ε2). Once we bound the total message

length by the polynomial µ, it follows from yet another simple reduction argument that A’s
advantage in distinguishing Game2 from Game3 is at most µε1 (i.e.,

∣∣Adv2
A,Π − Adv3

A,Π
∣∣ ≤ µε1).

Thus,
∣∣∣Adv0

A,Π − Adv3
A,Π

∣∣∣ ≤ µε1 + ε2 + ε3.
The theorem then follows from the observation that Game3 amounts to the actual BS-IND-CCA

game when the challenge bit b∗ is fixed to 1. �
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