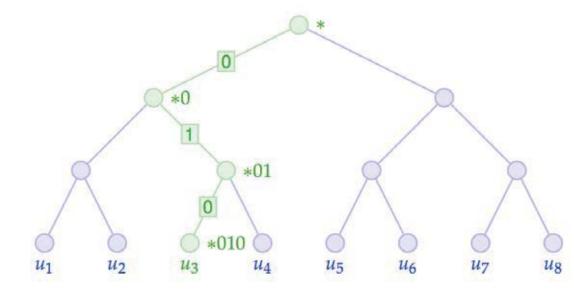


MINISTRY OF DEFENCE

ACITA 2012 Protecting Receivers' Identities in Secure Data Distribution

Annual Conference of ITA

Nelly Fazio (The Graduate Center & The City College, CUNY), Irippuge Milinda Perera (The Graduate Center, CUNY)


Motivation & State-of-the-Art

Cryptographic tools for securing multicast communications:

- Broadcast Encryption (BE): transmit data to a dynamically changing set of recipients
 - Info about receivers is broadcast in the clear

Receivers' identities often sensitive.

- [NNL01] provides two ways of defining subsets: Complete Subtree (CS) and Subset Difference (SD) method
- Dodis and Fazio (2002) extend the CS and SD methods to the publickey setting
- Idea: Novel ID assignment +

Secure communication ought to protect more than just transmitted content!

Anonymous BE (ABE) [BBW06]: also hides receiver set

Current best solution

- Ciphertext linear in number of recipients
- Security model against static adversary
- Security of enhanced construction based on the ROM; [LPQ12] recently removed ROM from [BBW06]

Networking technology at support of military operations

• ABE enables secure distribution of tactical data in missions with ad-hoc team formation while concealing identities of operatives authorized to access content

BE enables efficient encrypted file systems

 ABE avoids disclosure of the identities of the authorized users, not only from outsiders, but also from one another

Primitives

Anonymous Identity-Based Encryption (AIBE)

- A public-key encryption scheme where the user public key is an arbitrary bit-string
- Ciphertext hides the identity under which it is encrypted

(Hierarchical) Identity-Based Encryption ((H)IBE)

Results

Outsider Anonymous Broadcast Encryption (oABE):

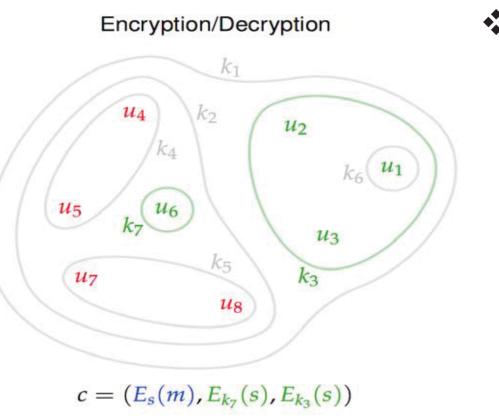
Relaxing receiver anonymity guarantees for better efficiency

Recipient's identities hidden from outsiders...

- ✤... but individual recipients might learn about each other
- Attain sub-linear ciphertexts in the number of recipients (in the standard model), and security against **active** adversary

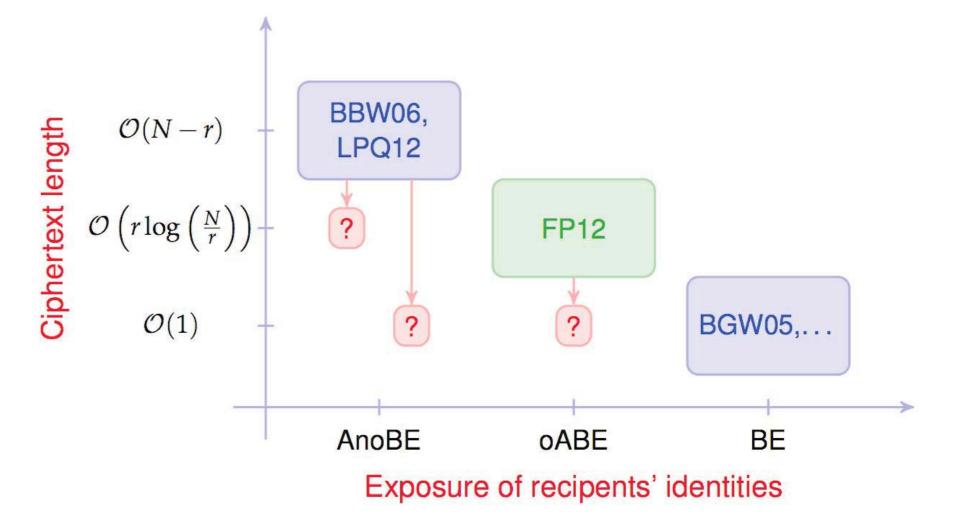
Our Constructions:

Idea: PK-CS method + Anonymous IBE = oABE


Generic CPA + Generic CCA + CCA w/ enhanced decryption

	Scheme	PK Length	SK Length	CT Length	Decryption Attempts
Regular	BBW06	$\mathcal{O}\left(N ight)$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(N-r ight)$	$\mathcal{O}(N-r)$
	LPQ12	$\mathcal{O}\left(N ight)$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(N-r\right)$	$\mathcal{O}\left(N-r ight)$
	FP12	$\mathcal{O}\left(1 ight)$	$\mathcal{O}(\log N)$	$\mathcal{O}\left(r\log\left(\frac{N}{r}\right)\right)$	$\mathcal{O}\left(r\log\left(\frac{N}{r}\right)\log N\right)$
Enhanced	BBW06	$\mathcal{O}\left(N ight)$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(N-r ight)$	1
	LPQ12	$\mathcal{O}\left(N ight)$	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(N-r ight)$	1
	FP12	$\mathcal{O}\left(N ight)$	$\mathcal{O}(\log N)$	$\mathcal{O}\left(r\log\left(\frac{N}{r}\right)\right)$	1
	FP12	$\mathcal{O}\left(N^2\right)$	$\mathcal{O}\left(N ight)$	$\mathcal{O}\left(2r\right)$	1

N: total number of users. r: number of revoked users.


The Subset Cover Framework [NNL01]

- Goal: Define and analyze the security of revocation schemes in the private-key setting
- Users belong to multiple subsets with associated keys

To broadcast a message, first find the set of subsets covering the recipient set, and then encrypt the message under the keys of the coverset (*hybrid* encryption)

Long-Term Goals

